955 research outputs found

    The Biequivalence of Locally Cartesian Closed Categories and Martin-L\"of Type Theories

    Get PDF
    Seely's paper "Locally cartesian closed categories and type theory" contains a well-known result in categorical type theory: that the category of locally cartesian closed categories is equivalent to the category of Martin-L\"of type theories with Pi-types, Sigma-types and extensional identity types. However, Seely's proof relies on the problematic assumption that substitution in types can be interpreted by pullbacks. Here we prove a corrected version of Seely's theorem: that the B\'enabou-Hofmann interpretation of Martin-L\"of type theory in locally cartesian closed categories yields a biequivalence of 2-categories. To facilitate the technical development we employ categories with families as a substitute for syntactic Martin-L\"of type theories. As a second result we prove that if we remove Pi-types the resulting categories with families are biequivalent to left exact categories.Comment: TLCA 2011 - 10th Typed Lambda Calculi and Applications, Novi Sad : Serbia (2011

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089

    Extensional Collapse Situations I: non-termination and unrecoverable errors

    Get PDF
    We consider a simple model of higher order, functional computation over the booleans. Then, we enrich the model in order to encompass non-termination and unrecoverable errors, taken separately or jointly. We show that the models so defined form a lattice when ordered by the extensional collapse situation relation, introduced in order to compare models with respect to the amount of "intensional information" that they provide on computation. The proofs are carried out by exhibiting suitable applied {\lambda}-calculi, and by exploiting the fundamental lemma of logical relations

    Semantics of a Typed Algebraic Lambda-Calculus

    Full text link
    Algebraic lambda-calculi have been studied in various ways, but their semantics remain mostly untouched. In this paper we propose a semantic analysis of a general simply-typed lambda-calculus endowed with a structure of vector space. We sketch the relation with two established vectorial lambda-calculi. Then we study the problems arising from the addition of a fixed point combinator and how to modify the equational theory to solve them. We sketch an algebraic vectorial PCF and its possible denotational interpretations

    TR-2009002: Cartesian Closed Categories for the Logic of Proofs

    Full text link
    • …
    corecore