1,257 research outputs found

    Bin Packing and Related Problems: General Arc-flow Formulation with Graph Compression

    Full text link
    We present an exact method, based on an arc-flow formulation with side constraints, for solving bin packing and cutting stock problems --- including multi-constraint variants --- by simply representing all the patterns in a very compact graph. Our method includes a graph compression algorithm that usually reduces the size of the underlying graph substantially without weakening the model. As opposed to our method, which provides strong models, conventional models are usually highly symmetric and provide very weak lower bounds. Our formulation is equivalent to Gilmore and Gomory's, thus providing a very strong linear relaxation. However, instead of using column-generation in an iterative process, the method constructs a graph, where paths from the source to the target node represent every valid packing pattern. The same method, without any problem-specific parameterization, was used to solve a large variety of instances from several different cutting and packing problems. In this paper, we deal with vector packing, graph coloring, bin packing, cutting stock, cardinality constrained bin packing, cutting stock with cutting knife limitation, cutting stock with binary patterns, bin packing with conflicts, and cutting stock with binary patterns and forbidden pairs. We report computational results obtained with many benchmark test data sets, all of them showing a large advantage of this formulation with respect to the traditional ones

    On Lazy Bin Covering and Packing problems

    Get PDF
    AbstractIn this paper, we study two interesting variants of the classical bin packing problem, called Lazy Bin Covering (LBC) and Cardinality Constrained Maximum Resource Bin Packing (CCMRBP) problems. For the offline LBC problem, we first prove the approximation ratio of the First-Fit-Decreasing and First-Fit-Increasing algorithms, then present an APTAS. For the online LBC problem, we give a competitive analysis for the algorithms of Next-Fit, Worst-Fit, First-Fit, and a modified HARMONICM algorithm. The CCMRBP problem is a generalization of the Maximum Resource Bin Packing (MRBP) problem Boyar et al. (2006) [1]. For this problem, we prove that its offline version is no harder to approximate than the offline MRBP problem

    Online Bin Packing with Cardinality Constraints Resolved

    Get PDF
    Cardinality constrained bin packing or bin packing with cardinality constraints is a basic bin packing problem. In the online version with the parameter k >= 2, items having sizes in (0,1] associated with them are presented one by one to be packed into unit capacity bins, such that the capacities of bins are not exceeded, and no bin receives more than k items. We resolve the online problem in the sense that we prove a lower bound of 2 on the overall asymptotic competitive ratio. This closes the long standing open problem of finding the value of the best possible overall asymptotic competitive ratio, since an algorithm of an absolute competitive ratio 2 for any fixed value of k is known. Additionally, we significantly improve the known lower bounds on the asymptotic competitive ratio for every specific value of k. The novelty of our constructions is based on full adaptivity that creates large gaps between item sizes. Thus, our lower bound inputs do not follow the common practice for online bin packing problems of having a known in advance input consisting of batches for which the algorithm needs to be competitive on every prefix of the input. Last, we show a lower bound strictly larger than 2 on the asymptotic competitive ratio of the online 2-dimensional vector packing problem, and thus provide for the first time a lower bound larger than 2 on the asymptotic competitive ratio for the vector packing problem in any fixed dimension

    Lower bounds for several online variants of bin packing

    Full text link
    We consider several previously studied online variants of bin packing and prove new and improved lower bounds on the asymptotic competitive ratios for them. For that, we use a method of fully adaptive constructions. In particular, we improve the lower bound for the asymptotic competitive ratio of online square packing significantly, raising it from roughly 1.68 to above 1.75.Comment: WAOA 201

    Packing Sporadic Real-Time Tasks on Identical Multiprocessor Systems

    Get PDF
    In real-time systems, in addition to the functional correctness recurrent tasks must fulfill timing constraints to ensure the correct behavior of the system. Partitioned scheduling is widely used in real-time systems, i.e., the tasks are statically assigned onto processors while ensuring that all timing constraints are met. The decision version of the problem, which is to check whether the deadline constraints of tasks can be satisfied on a given number of identical processors, has been known NP{\cal NP}-complete in the strong sense. Several studies on this problem are based on approximations involving resource augmentation, i.e., speeding up individual processors. This paper studies another type of resource augmentation by allocating additional processors, a topic that has not been explored until recently. We provide polynomial-time algorithms and analysis, in which the approximation factors are dependent upon the input instances. Specifically, the factors are related to the maximum ratio of the period to the relative deadline of a task in the given task set. We also show that these algorithms unfortunately cannot achieve a constant approximation factor for general cases. Furthermore, we prove that the problem does not admit any asymptotic polynomial-time approximation scheme (APTAS) unless P=NP{\cal P}={\cal NP} when the task set has constrained deadlines, i.e., the relative deadline of a task is no more than the period of the task.Comment: Accepted and to appear in ISAAC 2018, Yi-Lan, Taiwa

    New Results on the Probabilistic Analysis of Online Bin Packing and its Variants

    Get PDF
    The classical bin packing problem can be stated as follows: We are given a multiset of items {a1, ..., an} with sizes in [0,1], and want to pack them into a minimum number of bins, each of which with capacity one. There are several applications of this problem, for example in the field of logistics: We can interpret the i-th item as time a package deliverer spends for the i-th tour. Package deliverers have a daily restricted working time, and we want to assign the tours such that the number of package deliverers needed is minimized. Another setup is to think of the items as boxes with a standardized basis, but variable height. Then, the goal is to pack these boxes into a container, which is standardized in all three dimensions. Moreover, applications of variants of the classical bin packing problem arise in cloud computing, when we have to store virtual machines on servers. Besides its practical relevance, the bin packing problem is one of the fundamental problems in theoretical computer science: It was proven many years ago that under standard complexity assumptions it is not possible to compute the value of an optimal packing of the items efficiently - classical bin packing is NP-complete. Computing the value efficiently means that the runtime of the algorithm is bounded polynomially in the number of items we have to pack. Besides the offline version, where we know all items at the beginning, also the online version is of interest: Here, the items are revealed one-by-one and have to be packed into a bin immediately and irrevocably without knowing which and how many items will still arrive in the future. Also this version is of practical relevance. In many situations we do not know the whole input at the beginning: For example we are unaware of the requirements of future virtual machines, which have to be stored, or suddenly some more packages have to be delivered, and some deliverers already started their tour. We can think of the classical theoretical analysis of an online algorithm A as follows: An adversary studies the behavior of the algorithm and afterwards constructs a sequence of items I. Then, the performance is measured by the number of used bins by A performing on I, divided by the value of an optimal packing of the items in I. The adversary tries to choose a worst-case sequence so this way to measure the performance is very pessimistic. Moreover, the chosen sequences I often turn out to be artificial: For example, in many cases the sizes of the items increase monotonically over time. Instances in practice are often subject to random influence and therefore it is likely that they are good-natured. In this thesis we analyze the performance of online algorithms with respect to two stochastic models. The first model is the following: The adversary chooses a set of items SI and a distribution F on SI. Then, the items are drawn independently and identically distributed according to F. In the second model the adversary chooses a finite set of items SI and then these items arrive in random order, that is random with respect to the uniform distribution on the set of all possible permutations of the items. It is possible to show that the adversary in the second stochastic model is at least as powerful as in the first one. We can classify the results in this thesis in three parts: In the first part we consider the complexity of classical bin packing and its variants cardinality-constrained and class-constrained bin packing in both stochastic models. That is, we determine if it is possible to construct algorithms that are in expectation nearly optimal for large instances that are constructed according to the stochastic models or if there exist non-trivial lower bounds. Among other things we show that the complexity of class-constrained bin packing differs in the two models under consideration. In the second part we deal with bounded-space bin packing and the dual maximization variant bin covering. We show that it is possible to overcome classical worst-case bounds in both models. In other words, we see that bounded-space algorithms benefit from randomized instances compared to the worst case. Finally, we consider selected heuristics for class-constrained bin packing and the corresponding maximization variant class-constrained bin covering. Here, we note that the different complexity of class-constrained bin packing with respect to the studied stochastic models observed in the first part is not only a theoretical phenomenon, but also takes place for many common algorithmic approaches. Interestingly, when we apply the same algorithmic ideas to class-constrained bin covering, we benefit from both types of randomization similarly. </ul
    corecore