
Improved Lower Bounds for the Online Bin Packing Problem

with Cardinality Constraints

Hiroshi Fujiwara Koji Kobayashi

Abstract

The bin packing problem has been extensively studied and numerous variants have been
considered. The k-item bin packing problem is one of the variants introduced by Krause
et al. in Journal of the ACM 22(4). In addition to the formulation of the classical bin
packing problem, this problem imposes a cardinality constraint that the number of items
packed into each bin must be at most k. For the online setting of this problem, in which the
items are given one by one, Babel et al. provided lower bounds

√
2 ≈ 1.41421 and 1.5 on the

asymptotic competitive ratio for k = 2 and 3, respectively, in Discrete Applied Mathematics
143(1-3). For k ≥ 4, some lower bounds (e.g., by van Vliet in Information Processing Letters
43(5)) for the online bin packing problem, i.e., a problem without cardinality constraints,
can be applied to this problem.

In this paper we consider the online k-item bin packing problem. First, we improve the
previous lower bound 1.41421 to 1.42764 for k = 2. Moreover, we propose a new method to
derive lower bounds for general k and present improved bounds for various cases of k ≥ 4.
For example, we improve 1.33333 to 1.5 for k = 4, and 1.33333 to 1.47058 for k = 5.

1 Introduction

The bin packing problem is one of the most extensively studied problems in the field of computer
science, which is defined as follows. We are given a sequence of items, each of size in the range
(0, 1], as an input, and an infinite number of bins. Each item has to be packed into one of the
bins, and the sum of sizes of items packed into each bin has to be at most one. A bin that
contains at least one item is said to be non-empty. The goal of this problem is to minimize the
number of non-empty bins.

The bin packing problem has been studied also in the online setting: the items are given
one by one, and each item has to be packed before the next one is given. This version is quite
important in both theoretical and applied aspects, and much work has been done on it (e.g.
[RBLL89, vV92, Sei02, BBG12]). Online algorithms are usually evaluated using competitive
analysis [BE98, ST85]. For any sequence σ of items, and any algorithm ALG, let CALG(σ)
denote the number of ALG’s non-empty bins for σ. Let OPT be an optimal offline algorith-
m. Then, for any online algorithm ON , define RON = lim supn→∞ supσ{CON (σ)/COPT (σ) |
COPT (σ) = n}, which we call the asymptotic competitive ratio (also known as the asymptotic
performance ratio) of ON .

A constraint that the number of items packed in a bin is somehow restricted seems quite
realistic in application. For example, since there exists the minimum size of files used by a
computer, the number of files stored on the computer is bounded. In light of this situation,
Krause et al. [KSS75, KSS77] introduced the k-item bin packing problem, in which the cardinality

0This work was supported by KAKENHI (23700014 and 23500014). The final publication is available at
http://dx.doi.org/10.1007/s10878-013-9679-8.

1

Table 1: Previous results and our results for the online k-item bin packing problem

k lower bound upper bound

2
√
2(≈ 1.41421) [BCKK04] → 1.42764 [this paper] 1 +

√
5
5 (≈ 1.44721) [BCKK04]

3 1.5 [BCKK04] 1.75 [Eps06]

4 4
3(≈ 1.33333) [vV92] → 1.5 [this paper] 71

38(≈ 1.86843) [Eps06]

5 4
3(≈ 1.33333) [vV92] → 25

17(≈ 1.47058) [this paper] 771
398(≈ 1.93719) [Eps06]

6 1.5 [Yao80] 287
144(≈ 1.99306) [Eps06]

7 to 9 1.5 [Yao80]

2
[BCKK04]

10 to 41 1.5 [Yao80] → (See Table 2 in Section 3.) [this paper]

42 to 293 217
141(≈ 1.53900) [vV92]

294 to 2057 10633
6903 (≈ 1.54034) [BBG12]

∞ 248
161(≈ 1.54037) [BBG12] 1.58889 [Sei02]

constraint that each bin can contain at most k items is imposed. (They defined this problem
as a scheduling problem.) This problem has been well studied in both the offline and online
settings.

Previous Results and Our Results. In the online k-item bin packing problem, in which
items are given in an online manner and the number of items in a bin has to be at most k,
Babel et al. [BCKK04] showed that for k = 2, the asymptotic competitive ratio of any online
algorithm is at least

√
2 ≈ 1.41421. Also, they presented a lower bound of 1.5 when k = 3 using

the method by Yao [Yao80]. Moreover, for larger k, lower bounds by van Vliet [vV92], Yao
[Yao80], and Balogh et al. [BBG12] for the online bin packing problem, i.e., a problem without
cardinality constraints, can be applied to the online k-item bin packing problem. We mention
that the lower bounds for k = 4 and 5 are straightforwardly given by manipulating the method
in [vV92]. (See Table 1.)

In this paper, we consider the online k-item bin packing problem. First, we show that the
asymptotic competitive ratio of any algorithm is at least r ≈ 1.42764 for k = 2, where r is the
root of the equation 2r3 − 17r2 + 30r − 14 = 0 between 4

3 and 3
2 , which improves the previous

lower bound. The gap between the upper and lower bounds is reduced by about 40%. Second,
we extend the method by van Vliet [vV92] and get improved lower bounds for various cases of
k ≥ 4. For example, we improve 1.33333 to 1.5 for k = 4, and 1.33333 to 1.47058 for k = 5.
(See Table 1, and also Table 2 in Section 3.)

Related Results. In the online k-item bin packing problem, Krause et al. [KSS75, KSS77]
showed that for any k, the asymptotic competitive ratio of the most basic algorithm FirstFit is
at most 2.7−12/5k. Babel et al. [BCKK04] established an algorithm whose asymptotic compet-
itive ratio is at most 2 for any k. Moreover, Babel et al. [BCKK04] and Epstein [Eps06] designed
algorithms for small k. These results are also presented in Table 1. In addition, Epstein [Eps06]
established a bounded space algorithm. She showed that its asymptotic competitive ratio is
at most 2.69104, and is asymptotically optimal. Note that while a bounded space algorithm
always has only a constant number of bins available to accept items, the other results described
above, including our new results, focus on unbounded space algorithms. There are some stud-

2

ies [KP99, CKP03, EL10] about approximation algorithms for the k-item bin packing problem.
Needless to say, the online bin packing problem (without cardinality constraints) has been much
studied. The best upper and lower bounds are 1.58889 by Seiden [Sei02] and 248/161 ≈ 1.54037
by Balogh et al. [BBG12], respectively.

2 A Lower Bound for k = 2

In this section we present a lower bound of 1.42764 for k = 2. We first define an adversary
which determines the size of the next item adaptively according to the behavior of an online
algorithm. The strategy of the adversary is chosen from the three strategies whose pseudocodes
will be later given as Routine1, 2, and 3, respectively.

We begin by describing three subroutines called by Routine1, 2, and 3. See their pseu-
docodes Subroutine1, 2, and 3 below. Roughly speaking, each subroutine gives a sequence
of items while changing the size within a specified range. The only difference among the three
subroutine is only the termination conditions. Let us see the details. Each subroutine is called
with four arguments: an online algorithm ON and three values Min, Max, and Length with
Min < Max. Each subroutine returns the current value of the internal variable tmpMin. The
sizes of given items are chosen from the range (Min, Max). For ease of presentation, if an algo-
rithm ALG is about to put an item into a bin that contains no item, we say that ALG opens
the bin. The termination conditions of the three subroutines are as follows: Subroutine1
finishes when it has given Length items to ON , Subroutine2 finishes when ON has opened
new Length bins, and Subroutine3 finishes when ON has created Length bins with two items.

Before giving their pseudocodes, we define a function f used in these subroutines: for any
x, y ∈ (0, 1] with x < y, f(x, y) = (x+ y)/2. (Indeed, f can be any function that maps x and y
to a value between x and y.)

Subroutine1(ON , Min, Max, Length):

Step 1. a1 := f(Min, Max), tmpMax := Max, tmpMin := Min, and i := 1.
Step 2. Give an item bi of size ai, and do the following according to ON ’s action.

Case 2.1. If ON opens a bin and puts bi into it,
ai+1 := f(tmpMin, ai) and tmpMax := ai.

Case 2.2. Otherwise,
ai+1 := f(ai, tmpMax) and tmpMin := ai.

Step 3. If Length = i, then return tmpMin. Otherwise, i := i+ 1, and go to Step 2.

Subroutine2(ON , Min, Max, Length):

Step 1. a1 := f(Min, Max), tmpMax := Max, tmpMin := Min, and i := 1.
Step 2. Give ON an item bi of size ai, and do the following according to ON ’s action.

Case 2.1. If ON opens a bin and puts bi into it, then
ai+1 := f(tmpMin, ai) and tmpMax := ai.

Case 2.2. Otherwise,
ai+1 := f(ai, tmpMax) and tmpMin := ai.

Step 3. If the number of bins that were opened by ON at Case 2.1 is Length, then return
tmpMin. Otherwise, i := i+ 1, and go to Step 2.

Subroutine3(ON , Min, Max, Length):

Step 1. a1 := f(Min, Max), tmpMax := Max, tmpMin := Min, and i := 1.
Step 2. Give ON an item bi of size ai, and do the following according to ON ’s action.

3

Case 2.1. If ON opens a bin and puts bi into it, then
ai+1 := f(tmpMin, ai) and tmpMax := ai.

Case 2.2. Otherwise,
ai+1 := f(ai, tmpMax) and tmpMin := ai.

Step 3. If the number of bins with two items both of which are given at Step 2 is Length, then
return tmpMin. Otherwise, i := i+ 1, and go to Step 2.

The purpose of these subroutines is to construct a sequence that has the following property.

Lemma 1. Suppose that Subroutine1 (Subroutine2, Subroutine3, respectively) is called
with some ON , Max, and Min with Max > Min. Let βj be the size of the j-th item (1 ≤ j ≤ n)
that is put into a bin at Case 2.1, and let γj′ be the size of the j′-th item (1 ≤ j′ ≤ m) that
is put into a bin at Case 2.2. Also, let β0 := Max and γ0 := Min. Denote by tmin (tmax)
the value of tmpMin (tmpMax, respectively) at the moment when the subroutine returns. Then,
β0 > β1 > · · · > βn = tmax > tmin = γm > · · · > γ1 > γ0.

Proof. Although the terminal conditions of Subroutine1, 2, and 3 are different from one
another, their pseudocodes of Step2, where the sizes of items are determined, are the same.
Thus, it is only necessary to consider Subroutine1. The proof is by induction on the number
of items given at Step 2 in Subroutine1. Let tmin,j(tmax,j) denote the value of tmpMin (tmpMax)
just before the j-th item is given. First, we consider just before the first item of size a1 is given.
By the assumption that Max > Min and the definition of Step 1, Max = β0 = tmax,1 > tmin,1 =
γ0 = Min, which proves that the base case is true.

We suppose that the statement is true just before the i(≥ 1)-th item bi whose size is ai is
given, and prove the statement holds just after bi is given. Let j′ (j′′) denote the number of
items which are packed at Case 2.1 (2.2) just before bi is given. By the induction hypothesis,
(a) βj′ = tmax,i > tmin,i = γj′′ . Also, when bi is packed, (b-1) βj′+1 = tmax,i+1 = ai and (b-2)
tmin,i+1 = tmin,i hold if Case 2.1 applies. If Case 2.2 applies, then (b-3) γj′′+1 = tmin,i+1 = ai
and (b-4) tmax,i+1 = tmax,i.

Next, we consider the size ai of bi. If i = 1, then (c) β0 > a1 > γ0. In the case i ≥ 2, ai
is determined depending on which of Case 2.1 or Case 2.2 applies to the (i − 1)-th item bi−1

whose size is ai−1. If Case 2.1 applies to bi−1, then (d-1) ai−1 = βj′ > ai > tmin,i−1 = tmin,i. If
Case 2.2 applies, (d-2) tmax,i−1 = tmax,i > ai > γj′′ = ai−1.

Now we prove each case. First, we consider i = 1, that is, the moment just after the
first item b1 whose size is a1 is given. Since no item has been given yet at this moment,
j′ = j′′ = 0. If Case 2.1 applies to b1, then β0 > a1 = β1 = tmax,2 by (c) and (b-1). Furthermore,
a1 > γ0 = tmin,1 = tmin,2 by (c), (a), and (b-2). Hence, β0 > β1 = tmax,2 > tmin,2 = γ0 by these
inequalities, which means that the statement is true. In the same way, if Case 2.2 applies to b1,
then γ0 < γ1 = tmin,2 < tmax,2 = β0 by (a), (c), (b-3) and (b-4).

Next, we discuss the case i ≥ 2. Firstly, we discuss the case where Case 2.1 applies to bi−1

and bi. By (a), (b-1), (b-2) and (d-1), βj′ > βj′+1 = tmax,i+1 = ai > tmin,i = tmin,i+1 = γj′′

holds. Thus, the statement holds. Second, if Cases 2.1 and 2.2 apply for bi−1 and bi, respectively,
then βj′ = tmax,i+1 = tmax,i > ai = tmin,i+1 = γj′′+1 > γj′′ by (a), (b-3), (b-4) and (d-1). We
have shown that the statement is true when Case 2.1 applies to bi−1.

The case where Case 2.2 applies to bi−1 can be shown in a similar way to the above argument.
We have shown that the statement is true just after bi is given, which completes the proof.

Now we are ready to describe the main routines any of which the adversary chooses as
its strategy. We remark here that Routine1 outputs an equivalent sequence to that used for
getting a lower bound for k = 2 in [BCKK04]. In that analysis the competitiveness of an online

4

algorithm depends on how it packs the items given in the counterpart of Step 1. Our analysis,
in addition, examines how to deal with those given in Step 3 and Step 4 of Routine2 and 3.

The variables t, b, s, x, y, u, z, w, and v appearing in the pseudocodes are used both for
the execution of the routine and for the later analysis. The symbol “#” stands for “the number
of”.

Routine1(ON , Length):

Step 1. Call Subroutine1(ON , 1
10 ,

1
9 , Length), and t := (the return value).

Then, x
2 := (# bins with two items), and y := (# bins with exactly one item).

Step 2. Give ON x
2 items of size 1− t.

Routine2(ON , Length):

Step 1. Call Subroutine1(ON , 1
10 ,

1
9 , Length), and t := (the return value).

Then, x
2 := (# bins with two items), and y := (# bins with exactly one item).

Step 2. Give ON x
2 items of size 1− t.

Step 3. Call Subroutine2(ON , 4
5 ,

7
8 , y +

x
2), and b := (the return value).

Then, u := (# bins with one item given in Step 1 and one given in Step 3).
Step 4. Call Subroutine1(ON , 1

6 , 1− b, u).
Then, z := (# bins with one item given in Step 1 and one given in Step 4).

Routine3(ON , Length):

Step 1. Call Subroutine1(ON , 1
10 ,

1
9 , Length), and t := (the return value).

Then, x
2 := (# bins with two items), and y := (# bins with exactly one item).

Step 2. Give ON x
2 items of size 1− t.

Step 3. Call Subroutine2(ON , 4
5 ,

7
8 , y +

x
2), and b := (the return value).

Then, u := (# bins with one item given in Step 1 and one given in Step 3).
Step 4. Call Subroutine3(ON , 1

6 , 1− b, u), and s := (the return value).
Then, z + w := (# bins with one item given in Step 1 and one given in Step 4), and

v := (# bins with exactly one item given in Step 4).
Step 5. Give ON u+ z + w items of size 1− s.

For an arbitrary online algorithm ALG and a positive integer Length, let Routine1, 2, and
3 run and generate sequences of items σ1, σ2, and σ3, respectively. What should be remarked
upon here is that σ1 is a prefix of σ2 and σ2 is a prefix of σ3. Compare Step 4 in Routine2
and 3. At this step, the routines call different subroutines but with the same arguments. By
the terminal conditions, we know that Subroutine3 gives no fewer items than Subroutine1.
This verifies the consistency of the setting of the variables z(≥ 0) and w(≥ 0).

Now we see what items are included in the longest sequence σ3. According to the values t,
b, and s determined through the execution of Routine3, we classify all items into the following
eight categories:

• t−-items, those which are of size in (1
10 , t] and given in Step 1,

• t+-items, those which are of size in (t, 19) and given in Step 1,

• (1− t)-items, those which are of size (1− t) and given in Step 2,

• b−-items, those which are of size in (45 , b] and given in Step 3,

• b+-items, those which are of size in (b, 78) and given in Step 3,

5

• s−-items, those which are of size in (16 , s] and given in Step 4,

• s+-items, those which are of size in (s, 1− b) and given in Step 4, and

• (1− s)-items, those which are of size (1− s) and given in Step 5.

Lemma 1 clarifies the magnitude relation among items given in each subroutine. Together
with the categorization above, we have the next fact:

Fact. In the execution of Subroutine1 (2, 3, respectively) called by Routine3, every item
that is put into a bin at Case 2.1 is classified as a t+-item (b+-item, s+-item, respectively),
while every item that is put into a bin at Case 2.2 is classified as a t−-item (b−-item, s−-item,
respectively).

The lemma below counts the numbers of non-empty bins of ALG and OPT . See Figure 1
for the packings.

Lemma 2. For ALG, OPT , and (x, y, u, z, w, v) determined by each of Routine1, 2, and 3,
it holds that:

Length = x+ y,

CALG(σ1) = x+ y,

COPT (σ1) =
1

2
x+

⌈
1

4
x+

1

2
y

⌉
≤ 3

4
x+

1

2
y +

1

2
,

CALG(σ2) ≥
3

2
x+ 2y +

1

2
(u− z),

COPT (σ2) = x+ y + u,

CALG(σ3) ≥
3

2
x+ y + 3u+ v + 2z + 2w,

COPT (σ3) = x+ y + 2u+ z + w +

⌈
1

2
v

⌉
≤ x+ y + 2u+ z + w +

1

2
v +

1

2
.

Proof. We first evaluate CALG(σ3). As a result of Routine3, ALG has packed all items in σ3
as below (see also Figure 1):

• x
2 bins with a t+-item and a t−-item,

• x
2 bins with only a (1− t)-item,

• u bins with a t+-item and a b−-item,

• z + w bins with a t+-item and a s−-item,

• some bins with a t+-item and a (1− s)-item,

• some bins with only a t+-item,

• y + x
2 bins with only a b+-item,

• u bins with a s+-item and a s−-item,

• v bins with a s+-item, and

• some bins with only a (1− s)-item.

6

t+
t-

b+

t+
s-

s+

1-t b-

t+ t+

s-

s+

t+
t-

b+

t+
s-

t+

1-s

s+

1-t b-

t+ t+

s- 1-s
s+

t+t-

b+

s-

1-s

s+

1-t b-

t+t-

b+

s- s+

1-t b- b-

t+
t-

1-t

t+

t-

1-t

t+
t+

t+

s+

s+

s+

PSfrag repla
ements

x=2

x=2x=2

x=2

x=2

x=2x=2

x=2x=2

y

y

y

dx=4 + y=2e

u

u

uu

u z

� (u� z)=2

y + x=2

y + x=2

y + x=2

y + x=2

vz + w

u+ z + w

dv=2e

� 2u+ 2z + 2w � y

C

ALG

(�

1

) = x+ y

C

OPT

(�

1

) =

1

2

x+

�

1

4

x+

1

2

y

�

�

3

4

x+

1

2

y +

1

2

C

ALG

(�

2

) �

3

2

x+ 2y +

1

2

(u� z)

C

OPT

(�

2

) = x+ y + u

C

ALG

(�

3

) �

3

2

x+ y + 3u+ v + 2z + 2w

C

OPT

(�

3

) = x+ y + 2u+ z + w +

�

1

2

v

�

� x+ y + 2u+ z + w +

1

2

v +

1

2

Figure 1: Packings by an arbitrary online algorithm and an optimal offline algorithm for the
input sequences generated by Routine1, 2, and 3. The expression above (or below) a bin
indicates the number of such bins, that is, those which contain items as depicted.

7

Note that all possible packings are found in this list; by the preceding Fact, we know that ALG
never combines, for example, a pair of a t−-item and a (1− t)-item, or a pair of a s−-item and
a b+-item.

By tracing the execution of Routine3, we can easily confirm the number of bins belonging
to each type as the above list (see also Figure 1). To evaluate CALG(σ3), it is sufficient to bound
the number of bins containing solely a (1− s)-item. That is to say, we need not count the bins
with a t+-item and a (1− s)-item, or those with only a t+-item; we know that there are y
t+-items in total, as shown in Figure 1.

Consider the situation immediately before Step 5. Now there are (y − (u + z + w)) bins
which contain only a t+-item. Each of (u+ z+w) (1− s)-items, which are about to arrive, can
be packed with one of these t+-items. ALG can pack all (1− s)-items successfully if it opens
at least (u+ z+w− (y− (u+ z+w))) = (2u+2z+2w− y) new bins. Therefore, after Step 5,
there must be at least (2u+2z+2w−y) bins which contain only a (1− s)-item. Note that this
claim holds true even if (2u+2z+2w− y) is negative; this case is consistent with the situation
that every (1− s)-item is packed with one of the t+-items and consequently there is no need
to open a new bin. We thus evaluate CALG(σ3) by the above inequality.

On the other hand, OPT packs all items in σ3 as below (see also Figure 1):

• x
2 bins with a t−-item and a (1− t)-item,

• y + x
2 bins with a t+-item and a b+-item,

• u+ z + w bins with a s−-item and a (1− s)-item,

• u bins with a s+-item and a b−-item, and

•
⌈
1
2v

⌉
bins with one or two s+-items.

We give a supplementary explanation on how to pack s+-items. OPT first packs as many s+-
items with b−-items as possible. It next tries to create couples of the remaining s+-items, that
is to say, creates as many bins with two s+-items as possible and then a bin with just a s+-item
if a single s+-item is left at the end. The ceiling function is employed to represent inclusively
the number of bins containing only one or two s+-items without regard to the parity.

Since σ1 and σ2 are prefixes of σ3, the evaluations with respect to CALG(σ1), COPT (σ1),
CALG(σ2), and COPT (σ2) are done straightforwardly. Please see Figure 1 for the packings of σ1
and σ2. We here mention COPT (σ1) and CALG(σ2), which need some care.

COPT (σ1) is evaluated as follows: OPT lets x
2 bins contain a t−-item and a (1− t)-item. It

then tries to create couples of t+-items. Depending on the parity of the number, we have two
different representations. Thus, we use the ceiling function for this.

CALG(σ2) is evaluated as follows: Routine2 Step 4 issues u items in total. ALG puts z
items out of them together with t+-items. To pack the remaining (u−z) items requires at least
1
2(u− z) new bins.

Subroutine1 called by Step 1 of Routine1, 2, and 3 issues Length items. Then, ALG
creates x

2 bins with a t−-item and a t+-item, and y bins with only a t+-item. Counting the
total number of items, we easily have Length = x+ y.

The next lemma is the heart of our analysis.

Lemma 3. For an arbitrary online algorithm ALG and any ε > 0, there exists a positive
integer Length such that: Let Routine1, 2, and 3 run with ALG and Length as arguments,
and generate sequences of items σ1, σ2, and σ3, respectively. Then, it follows that

max

{
CALG(σ1)

COPT (σ1)
,
CALG(σ2)

COPT (σ2)
,
CALG(σ3)

COPT (σ3)

}
≥ r − ε, (1)

8

where r(≈ 1.42764) is the root of the cubic equation 2r3−17r2+30r−14 = 0 which lies between
4
3 and 3

2 .

Proof. Lemma 2 implies that it suffices to prove that: For any ε > 0, there exists a positive
integer Length such that for any nonnegative integers x, y, u, z, w, and v with x+ y = Length,

max

{
x+ y

3
4x+ 1

2y +
1
2

,
3
2x+ 2y + 1

2(u− z)

x+ y + u
,

3
2x+ y + 3u+ v + 2z + 2w

x+ y + 2u+ z + w + 1
2v +

1
2

}
≥ r − ε. (2)

This follows from the following Lemmas 4 and 5. By the setting of variables in Routine1,
2, and 3, it implicitly holds that x is even and u + z + w ≤ y. Note that although Lemmas 4
and 5 hold true even without these restrictions, this is of course sufficient.

The following lemma claims that when sufficiently many items are given, the constant 1
2

appearing in COPT (σ1) and COPT (σ3) is negligible.

Lemma 4. For any ε > 0, there exists a positive integer Length such that for any nonnegative
integers x, y, u, z, w, and v with x+ y = Length,

x+ y
3
4x+ 1

2y
− x+ y

3
4x+ 1

2y +
1
2

≤ ε, (3)

3
2x+ y + 3u+ v + 2z + 2w

x+ y + 2u+ z + w + 1
2v

−
3
2x+ y + 3u+ v + 2z + 2w

x+ y + 2u+ z + w + 1
2v +

1
2

≤ ε. (4)

Proof. We first give a simple observation: Let A, B, c, and ε be positive numbers.

A

B
− A

B + c
≤ ε

if and only if
B

A

(
1 +

B

c

)
≥ 1

ε
.

The proof is done by simply taking the inverse of both sides.
First, for any ε > 0 we show the inequality (4) by choosing Length properly. Let A :=

3
2x + y + 3u + v + 2z + 2w and B := x + y + 2u + z + w + 1

2v. Since x, y, u, z, w, and v are
nonnegative, A ≤ 2x + 2y + 4u + 2z + 2w + v = 2B and B ≥ x + y = Length hold true. We
then have B

A (1 +
B
1
2

) ≥ 1
2(1 +

Length
1
2

). The above observation with c = 1
2 implies that (4) holds

if we choose Length ≥ 1
ε −

1
2 .

Similarly we do with (3). Let A := x + y and B := 3
4x + 1

2y. A ≤ 3
2x + y = 2B and

B ≥ 1
2x + 1

2y = 1
2Length imply that B

A

(
1 + B

1
2

)
≥ 1

2 (1 + Length). The above observation

states that we should choose Length ≥ 2
ε − 1 for (3).

Lemma 5. For any nonnegative integers x, y, u, z, w, and v with x+ y > 0,

max

{
x+ y

3
4x+ 1

2y
,
3
2x+ 2y + 1

2(u− z)

x+ y + u
,
3
2x+ y + 3u+ v + 2z + 2w

x+ y + 2u+ z + w + 1
2v

}
≥ r, (5)

where r(≈ 1.42764) is the root of the cubic equation 2r3−17r2+30r−14 = 0 which lies between
4
3 and 3

2 .

9

Proof. The proof is done by contradiction. Assume the lemma to be false. Then, all of the
operands of the max operation in (5) can fall below r at the same time. That is to say, there
exists a tuple of nonnegative integers (x, y, u, z, w, v) with x+ y > 0 such that

f1 :=x+ y − r

(
3

4
x+

1

2
y

)
< 0, (6)

f2 :=
3

2
x+ 2y +

1

2
(u− z)− r (x+ y + u) < 0, (7)

f3 :=
3

2
x+ y + 3u+ v + 2z + 2w − r

(
x+ y + 2u+ z + w +

1

2
v

)
< 0. (8)

In what follows we show that there is no such (x, y, u, z, w, v). Specifically, we derive an
inequality that does not contain either x, y, or u from the inequalities (6), (7), and (8). We
then claim that there do not exist z, w, and v which satisfy the derived inequality.

Recall 4
3 < r < 3

2 . Noting that 3 − 2r and 2r − 1 are both positive, we have an inequality
without u from (7) and (8).

f4 :=4(3− 2r)f2 + 2(2r − 1)f3

=
(
−2r2 + 5r − 2

)
v +

(
−4r2 + 10r − 4

)
w +

(
4r2 − 16r + 15

)
x

+
(
4r2 − 22r + 22

)
y +

(
−4r2 + 14r − 10

)
z

<0.

(Please see that the elimination is done so that the resulting inequality sign makes sense.) Next,
let us eliminate x. The coefficient of x in the above inequality 4r2− 16r+15 = (5− 2r)(3− 2r)
is confirmed to be positive. Together with positivity of 3r − 4, we eliminate x using (6).

f5 :=4(4r2 − 16r + 15)f1 + (3r − 4) f4

=
(
−6r3 + 23r2 − 26r + 8

)
(v + 2w)+

2
(
2r3 − 17r2 + 30r − 14

)
y + 2

(
−6r3 + 29r2 − 43r + 20

)
z

=
(
−6r3 + 23r2 − 26r + 8

)
(v + 2w) + 2

(
−6r3 + 29r2 − 43r + 20

)
z

<0.

The reason why y has gone is because r is a root of 2r3 − 17r2 + 30r − 14 = 0. The inequality
4
3 < r < 3

2 leads to that both (−6r3+23r2−26r+8) = (2−r)(2r−1)(3r−4) and (−6r3+29r2−
43r+20) = (r− 1)(5− 2r)(3r− 4) are positive. Therefore, for fulfilling f5 < 0, either z, w, or v
should be negative. This contradicts the assumption that z, w, and v are all nonnegative.

Our new lower bound is obtained almost as a corollary from Lemma 3.

Theorem 1. Any online algorithm for the online 2-item bin packing problem has an asymptotic
competitive ratio of at least r, where r(≈ 1.42764) is the root of the cubic equation 2r3− 17r2+
30r − 14 = 0 which lies between 4

3 and 3
2 .

Proof. Let n0 be an arbitrary positive integer and

Tn := sup
σ

{CALG(σ)

COPT (σ)

∣∣∣ COPT (σ) ≥ n
}
.

Run Routine1, 2, and 3 with ALG and Length := 2n0 as arguments and obtain sequences of
items σ1, σ2, and σ3, respectively. Since

COPT (σ3) ≥ COPT (σ2) ≥ COPT (σ1) =
1

2
x+

⌈
1

4
x+

1

2
y

⌉
≥ 3

4
x+

1

2
y

≥ 1

2
(x+ y) =

1

2
Length = n0,

10

we have

Tn0 ≥ max
{CALG(σ1)

COPT (σ1)
,
CALG(σ2)

COPT (σ2)
,
CALG(σ3)

COPT (σ3)

}
.

This inequality and Lemma 3 imply that for any ε > 0, there exists n0 such that Tn0 ≥ r − ε.
On the other hand, by definition, the sequence {Tn} is non-increasing. Therefore,

RALG = lim sup
n→∞

sup
σ

{CALG(σ)

COPT (σ)

∣∣∣ COPT (σ) = n
}
= lim

n→∞
Tn = inf Tn ≥ r.

3 Lower Bounds for k ≥ 4

We propose an approach for deriving a lower bound for the online k-item bin packing problem
for each k ≥ 4, expanding the method of van Vliet [vV92] for the problem without a cardinality
constraint. His method was to solve a linear program in which variables represent the packings
by an arbitrary online algorithm given some patterns of input sequences. We illustrate how to
embed a cardinality constraint into the linear program.

Some existing lower bounds for the problem without a cardinality constraint, such as [Yao80,
vV92, BBG12], can be interpreted as lower bounds for the online k-item bin packing for some
ranges of k; if the possible item size is restricted to be at least s, then the problem can be
seen as the online k-item bin packing for k ≥ ⌊1s⌋, since there is no chance that more than ⌊1s⌋
items are packed together. Such results include: A lower bound of 4

3 for 4 ≤ k ≤ 5 [vV92], 3
2

for 6 ≤ k ≤ 41 [Yao80], 217
141 for 42 ≤ k ≤ 293 [vV92], and 10633

6903 for 294 ≤ k ≤ 2057 [BBG12].
See Table 1 in Section 1. Note that although the paper [vV92] does not provide the value of
4
3 explicitly, it is given just by slightly changing the settings of his method. In the derivation
of these results, the arbitrary online algorithm behaves without taking care of the cardinality
constraint; due to the setting of item size, the resulting packing naturally satisfies the cardinality
constraint. In this section, after the reformulation of a linear program, we set k < ⌊1s⌋ and try
to obtain a better lower bound.

We first give our new formulation with the cardinality constraint. We are given a tuple of
item sizes (s1, . . . , sl) with

∑l
i=1 si ≤ 1. Set N a positive integer divisible by k and ⌊ 1∑l

h=i sh
⌋

for all 1 ≤ i ≤ l. Let Li be a sequence of N items of size si for each 1 ≤ i ≤ l. The adversary
issues any of Ll · · ·Li (1 ≤ i ≤ l).

We denote by a vector (t1, . . . , tl)
T a packing of a bin that consists of ti items of size si

for 1 ≤ i ≤ l. Any packing has to satisfy the following constraints: (i) the capacity constraint∑l
i=1 tisi ≤ 1, (ii) the cardinality constraint

∑l
i=1 ti ≤ k, and (iii) the constraint that only

non-empty bins are taken into account
∑l

i=1 ti > 0.
Sort all feasible packings in a lexicographical order with a later entry having higher priority.

For example, for (s1, s2, s3) = (12 + ε, 13 + ε, 17 + ε) and k = 4, we have a list of feasible packings
sorted as (1, 0, 0)T , (0, 1, 0)T , (1, 1, 0)T , . . . , (1, 0, 3)T , (0, 1, 3)T , (0, 0, 4)T . Denote by ti,j the i-th
entry of the j-th packing in the sorted list. The set of ti,j ’s is regarded as a matrix. For the
above example,

(ti,j) =

 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0
0 1 1 2 0 0 1 1 2 0 0 1 2 0 0 1 0
0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 4

 . (9)

Let m be the number of feasible packings, which is 17 for this example.

11

Fix an online algorithm ALG arbitrarily. Suppose that given the input sequence Ll · · ·L1,
ALG creates nj bins according to the j-th packing (i.e., (t1,j , . . . , tl,j)

T). Define pi as the index
of the first column that has a non-zero entry in the i-th row of the matrix (ti,j). Then it holds
that for i ≥ 2 a packing before the pi-th is one that does not contain any items of size sl, . . . , si
and begins packing items of size si−1, and that p1 = 1. For the above example, p1 = 1, p2 = 2,
and p3 = 5. Thus, we can describe the total number of non-empty bins of ALG for Ll · · ·Li

(1 ≤ i ≤ l) as

CALG(Ll · · ·Li) =

m∑
j=pi

nj . (10)

The total number of non-empty bins of an optimal offline algorithm OPT is bounded by a
simple but nontrivial lemma.

Lemma 6. For 1 ≤ i ≤ l, COPT (Ll · · ·Li) ≤ max{ N
⌊ 1∑l

h=i
sh

⌋ ,
N(l−i+1)

k }.

Proof. Sort items in the input sequence Ll · · ·Li so that the sizes are ordered as

l−i+1︷ ︸︸ ︷
si, si+1, . . . , sl,

l−i+1︷ ︸︸ ︷
si, si+1, . . . , sl, · · · ,

l−i+1︷ ︸︸ ︷
si, si+1, . . . , sl,

and denote the sorted sequence by σ. The proof is done by presenting an offline algorithm OFF
that repeatedly takes a fixed number of items from the front of σ and puts them into a new bin.

We call any set of (l − i + 1) items whose sizes are si, . . . , sl, respectively, a collection. As
a preparation we remark the following. Suppose that the cardinality constraint can be ignored
and OFF puts as many disjoint collections into a bin as possible only subject to the capacity
constraint. Then, ⌊ 1∑l

h=i sh
⌋ disjoint collections, which consist of (l − i + 1)⌊ 1∑l

h=i sh
⌋ items in

total, can be packed into a bin.
(i) Case k ≥ (l − i + 1)⌊ 1∑l

h=i sh
⌋. We let OFF repeatedly take every (l − i + 1)⌊ 1∑l

h=i sh
⌋

items from the front of σ and put them into a new bin. Since the total number of items is
N(l − i+ 1) and N is divisible by ⌊ 1∑l

h=i sh
⌋, we have

COPT (Ll · · ·Li) ≤ COFF (Ll · · ·Li) =
N(l − i+ 1)

(l − i+ 1)⌊ 1∑l
h=i sh

⌋
=

N

⌊ 1∑l
h=i sh

⌋
.

(ii) Case k < (l− i+1)⌊ 1∑l
h=i sh

⌋. We let OFF repeatedly take every k items from the front

of σ and put them into a new bin. In what follows, we show that in each bin, the total size of
items does not exceed one.

It is observed that when σ is separated into subsequences with length k, each of the sub-
sequences consists of ⌊ k

l−i+1⌋ disjoint collections and a subset of a collection that contains

(k − ⌊ k
l−i+1⌋) items. Therefore, the total size of items in each subsequence is no greater than

the total size of items in ⌈ k
l−i+1⌉ disjoint collections, which is ⌈ k

l−i+1⌉
∑l

h=i sh. We next claim

that ⌈ k
l−i+1⌉

∑l
h=i sh ≤ 1.

By k < (l−i+1)⌊ 1∑l
h=i sh

⌋ and integrality of ⌊ 1∑l
h=i sh

⌋, we have k
l−i+1 ≤ ⌈ k

l−i+1⌉ ≤ ⌊ 1∑l
h=i sh

⌋.

Since ⌊ 1∑l
h=i sh

⌋
∑l

h=i sh ≤ 1, we conclude ⌈ k
l−i+1⌉

∑l
h=i sh ≤ 1.

Hence OFF puts exactly k items into each bin. Since N is divisible by k, we have

COPT (Ll · · ·Li) ≤ COFF (Ll · · ·Li) =
N(l − i+ 1)

k
.

12

As a matter of course, the whole set of bins created by ALG for Ll · · ·L1 contains N items
of size si for each 1 ≤ i ≤ l. This fact is described as

∑m
j=1 ti,jnj = N for all 1 ≤ i ≤ l. Note

that as long as this equation holds, the packings for Ll · · ·Li (1 ≤ i ≤ l − 1) are consistent as
well. For later formulation, we rewrite this as

m∑
j=1

ti,jnj

N
− 1 = 0, 1 ≤ i ≤ l. (11)

The asymptotic competitive ratio RALG is asymptotically lower-bounded by R such that

CALG(Ll · · ·Li)

COPT (Ll · · ·Li)
−R ≤ 0, 1 ≤ i ≤ l. (12)

A sufficient condition for (12) with slack variables (u1, . . . , ul) is

min
{⌊ 1∑l

h=i sh

⌋
,

k

l − i+ 1

} m∑
j=pi

nj

N
+ ui −R = 0, 1 ≤ i ≤ l (13)

for some ui ≥ 0 (1 ≤ i ≤ l). The derivation follows from (10) and N
COPT (Ll···Li)

≥ min{⌊ 1∑l
h=i sh

⌋, k
l−i+1}

obtained from Lemma 6.
The problem of finding the minimum R that satisfies (11) and (13) is formulated as a

mathematical program (PN) with a 2l × (m+ l + 1)-matrix A = (ai,j) and vectors x, b, and c
as below.

ai,j =



ti,j , 1 ≤ i ≤ l, 1 ≤ j ≤ m;

0, 1 ≤ i ≤ l,m+ 1 ≤ j ≤ m+ l + 1;

0, l + 1 ≤ i ≤ 2l, 1 ≤ j ≤ pi−l − 1;

min
{
⌊ 1∑l

h=i sh
⌋, k

l−i+1

}
, l + 1 ≤ i ≤ 2l, pi−l ≤ j ≤ m;

δi−l,j−m, l + 1 ≤ i ≤ 2l,m+ 1 ≤ j ≤ m+ l;

−1, l + 1 ≤ i ≤ 2l, j = m+ l + 1.

(14)

x =
(n1

N
, . . . ,

nm

N
,u1, . . . , ul, R

)T
, b = (

l︷ ︸︸ ︷
1, . . . , 1,

l︷ ︸︸ ︷
0, . . . , 0)T , c = (

m+l︷ ︸︸ ︷
0, . . . , 0, 1)T . (15)

(PN) minimize cTx

subject to Ax = b,x ≥ 0,x =
(n1

N
, . . . ,

nm

N
,u1, . . . , ul, R

)
(n1, . . . , nm) ∈ Zm, (u1, . . . , ul, R) ∈ Rl+1

Here δ·,· is Kronecker delta, that is, if i = j, δi,j = 1; otherwise, δi,j = 0. We will later give an
example of A, b, and c for (s1, s2, s3) = (12 + ε, 13 + ε, 17 + ε) and k = 4.

In the constraint Ax = b, the first l rows correspond to (11), while the (l+1)-th to 2l-th rows
correspond to (13). δi−l,j−m lets the slack variable ui appear in the equation of the (l + i)-th
row. The objective function is cTx = R. Note that A, b, and c are independent of the choice
of N .

Apparently, the optimal value of the following linear program (P) is a lower bound on the
optimal value of (PN).

(P) minimize cTx

subject to Ax = b,x ≥ 0,x ∈ Rm+l+1

13

Lemma 7. For given k and a tuple of item sizes (s1, . . . , sl) with
∑l

i=1 si ≤ 1, formulate
(P). Then, any online algorithm for the online k-item bin packing problem has an asymptotic
competitive ratio of at least the optimal value of (P).

Proof. Let ALG be an arbitrary online algorithm and

Tn := sup
σ

{CALG(σ)

COPT (σ)

∣∣∣ COPT (σ) ≥ n
}
.

Choose N to be a positive integer divisible by k and ⌊ 1∑l
h=i sh

⌋ for all 1 ≤ i ≤ l. From the

cardinality constraint, it follows that for 1 ≤ i ≤ l,

COPT (Ll · · ·Li) ≥ COPT (Ll) ≥
N

k
.

Hence, we have for n0 =
N
k ,

Tn0 ≥ max
{CALG(Ll · · ·Li)

COPT (Ll · · ·Li)

∣∣∣ 1 ≤ i ≤ l
}

= (the optimal value of (PN)) ≥ (the optimal value of (P)).

According to the choice of N , n0 can take an arbitrary large value.
On the other hand, by definition, the sequence {Tn} is non-increasing. Therefore,

RALG = lim sup
n→∞

sup
σ

{CALG(σ)

COPT (σ)

∣∣∣ COPT (σ) = n
}
= lim

n→∞
Tn = inf Tn ≥ (the optimal value of (P)).

The next theorem provides a lower bound for each 4 ≤ k ≤ 45. The reason why we do not
mention k ≥ 46 is simply because of space limitation. Note that as long as the computer power
is available, one can calculate a lower bound for arbitrary k using our method.

The tuples of item sizes we employ are those proposed by Balogh et al. [BBG12] for obtaining
a lower bound for the problem without a cardinality constraint, which were derived by modifying
those of van Vliet [vV92]. (Although Balogh et al. gave a different representation of formulation,
the nature is the same.) As mentioned before, in our analysis k is set smaller than the inverse
of the possible smallest item size.

Theorem 2. For each 4 ≤ k ≤ 45, any online algorithm for the online k-item bin packing
problem has an asymptotic competitive ratio of at least the value of “lower bound” in Table 2.

Proof. The proof is based on Lemma 7. Given k, we use a tuple of item sizes (12 +ε, 13 +ε, 17 +ε)
for k = 4 and 5, (12 +ε, 13 +ε, 17 +ε, 1

43 +ε) for 6 ≤ k ≤ 41, and (12 +ε, 13 +ε, 17 +ε, 1
49 +ε, 1

295 +ε)
for 42 ≤ k ≤ 45, where ε is set to be such a positive number that the sum of the sizes is no
larger than one. Using this setting we consider the linear program (P). Lemma 8 guarantees
the optimal value of (P) is at least the value of “lower bound” in Table 2.

We look into the results before presenting Lemma 8. Table 2 says that for the cases k = 4,
5, and 10 ≤ k ≤ 41, our results improve the known bounds. In contrast, one can see two types
of anomaly. (A) For each of k = 5, 13 ≤ k ≤ 30, and 42 ≤ k ≤ 45, the obtained bound does
not exceed that for some smaller k. (B) Any bound for 42 ≤ k ≤ 45 is smaller than the known
bound 217

141(≈ 1.53900) [vV92].
It is unlikely that the value of the matching upper and lower bound is not increasing with

respect to k. The above anomalies suggest a limit of our method; for some values of k, our

14

Table 2: Our new lower bounds for each 4 ≤ k ≤ 45. Bold font indicates improvement.

k lower bound k lower bound k lower bound

4 3
2(= 1.5) 18 93

61(≈ 1.52459) 32 496
323(≈ 1.53560)

5 25
17(≈ 1.47058) 19 171

112(≈ 1.52678) 33 341
222(≈ 1.53603)

6 3
2(= 1.5) 20 315

206(≈ 1.52912) 34 527
343(≈ 1.53644)

7 3
2(= 1.5) 21 26

17(≈ 1.52941) 35 1085
706 (≈ 1.53682)

8 3
2(= 1.5) 22 341

223(≈ 1.52914) 36 186
121(≈ 1.53719)

9 3
2(= 1.5) 23 713

466(≈ 1.53004) 37 1147
746 (≈ 1.53753)

10 80
53(≈ 1.50943) 24 124

81 (≈ 1.53086) 38 589
383(≈ 1.53785)

11 44
29(≈ 1.51724) 25 775

506(≈ 1.53162) 39 403
262(≈ 1.53816)

12 66
43(≈ 1.53488) 26 403

263(≈ 1.53231) 40 20
13(≈ 1.53846)

13 26
17(≈ 1.52941) 27 279

182(≈ 1.53296) 41 1271
826 (≈ 1.53874)

14 441
289(≈ 1.52595) 28 434

283(≈ 1.53356) 42 1519
993 (≈ 1.52970)

15 315
206(≈ 1.52912) 29 899

586(≈ 1.53412) 43 9331
6098(≈ 1.53017)

16 624
409(≈ 1.52567) 30 155

101(≈ 1.53465) 44 4774
3119(≈ 1.53061)

17 527
346(≈ 1.52312) 31 961

626(≈ 1.53514) 45 3255
2126(≈ 1.53104)

method fails to derive a good lower bound. It is an interesting open problem to construct a
better scheme for whatever k.

We here add that for k = 5, we searched for a tuple of item sizes which is different from the
tuple of Balogh et al., with the aim of obtaining an even larger bound. Nevertheless, as far as
we tried, we could not find a better tuple. We also mention that although we do not prove it
here, we found that for each 80 ≤ k ≤ 100, a better bound than 217

141 is obtained using the same
tuple of item sizes as that for 42 ≤ k ≤ 45.

Lemma 8. For given k (4 ≤ k ≤ 45), formulate (P) using (s1, s2, s3) = (12 + ε, 13 + ε, 17 + ε) if
k = 4 or 5, (s1, s2, s3, s4) = (12 + ε, 13 + ε, 17 + ε, 1

43 + ε) if 6 ≤ k ≤ 41, and (s1, s2, s3, s4, s5) =
(12 + ε, 13 + ε, 17 + ε, 1

49 + ε, 1
295 + ε) if 42 ≤ k ≤ 45. Set ε to be a positive number such that∑

si ≤ 1. Then, the optimal value of (P) is at least the value of “lower bound” in Table 2.

Proof. Consider the dual program (D) of (P):

(D) maximize bTy

subject to ATy ≤ c

y ∈ R2l

Pick up the “solution” corresponding to k from Table 3 and denote it by y. Since ATy ≤ c,
y is feasible for (D). The value of bTy is confirmed to be equal to the value of “lower bound”
for k in Table 2.

By the fact that for all x ≥ 0 with Ax = b, cTx ≥ (ATy)Tx = yTAx = yTb = bTy holds
true, which is known as the weak duality theorem, we have the optimal value of (P) is at least
the value of “lower bound” for k in Table 2.

15

Table 3: Solution to the dual program (D) formulated for each 4 ≤ k ≤ 45.

k solution k solution

4 (1
2
, 1
2
, 1
2
,− 1

2
,− 1

4
,− 1

4
)T 25 (150

253
, 150
253

, 75
253

, 25
506

,− 150
253

,− 75
253

,− 25
253

,− 3
253

)T

5 (10
17

, 10
17

, 5
17

,− 10
17

,− 5
17

,− 2
17

)T 26 (156
263

, 156
263

, 78
263

, 13
263

,− 156
263

,− 78
263

,− 26
263

,− 3
263

)T

6 (1
2
, 1
2
, 1
4
, 1
4
,− 1

2
,− 1

4
,− 1

6
,− 1

12
)T 27 (54

91
, 54
91

, 27
91

, 9
182

,− 54
91

,− 27
91

,− 9
91

,− 1
91

)T

7 (1
2
, 1
2
, 1
4
, 1
4
,− 1

2
,− 1

4
,− 1

7
,− 3

28
)T 28 (168

283
, 168
283

, 84
283

, 14
283

,− 168
283

,− 84
283

,− 28
283

,− 3
283

)T

8 (1
2
, 1
2
, 1
4
, 1
4
,− 1

2
,− 1

4
,− 1

8
,− 1

8
)T 29 (174

293
, 174
293

, 87
293

, 29
586

,− 174
293

,− 87
293

,− 29
293

,− 3
293

)T

9 (1
2
, 1
2
, 1
4
, 1
4
,− 1

2
,− 1

4
,− 1

9
,− 5

36
)T 30 (60

101
, 60
101

, 30
101

, 5
101

,− 60
101

,− 30
101

,− 10
101

,− 1
101

)T

10 (30
53

, 30
53

, 15
53

, 5
53

,− 30
53

,− 15
53

,− 6
53

,− 2
53

)T 31 (186
313

, 186
313

, 93
313

, 31
626

,− 186
313

,− 93
313

,− 31
313

,− 3
313

)T

11 (33
58

, 33
58

, 33
116

, 11
116

,− 33
58

,− 33
116

,− 3
29

,− 5
116

)T 32 (192
323

, 192
323

, 96
323

, 16
323

,− 192
323

,− 96
323

,− 32
323

,− 3
323

)T

12 (24
43

, 24
43

, 12
43

, 6
43

,− 24
43

,− 12
43

,− 4
43

,− 3
43

)T 33 (22
37

, 22
37

, 11
37

, 11
222

,− 22
37

,− 11
37

,− 11
111

,− 1
111

)T

13 (39
68

, 39
68

, 39
136

, 13
136

,− 39
68

,− 39
136

,− 13
136

,− 3
68

)T 34 (204
343

, 204
343

, 102
343

, 17
343

,− 204
343

,− 102
343

,− 34
343

,− 3
343

)T

14 (168
289

, 168
289

, 84
289

, 21
289

,− 168
289

,− 84
289

,− 28
289

,− 9
289

)T 35 (210
353

, 210
353

, 105
353

, 35
706

,− 210
353

,− 105
353

,− 35
353

,− 3
353

)T

15 (60
103

, 60
103

, 30
103

, 15
206

,− 60
103

,− 30
103

,− 10
103

,− 3
103

)T 36 (72
121

, 72
121

, 36
121

, 6
121

,− 72
121

,− 36
121

,− 12
121

,− 1
121

)T

16 (240
409

, 240
409

, 120
409

, 24
409

,− 240
409

,− 120
409

,− 40
409

,− 9
409

)T 37 (222
373

, 222
373

, 111
373

, 37
746

,− 222
373

,− 111
373

,− 37
373

,− 3
373

)T

17 (102
173

, 102
173

, 51
173

, 17
346

,− 102
173

,− 51
173

,− 17
173

,− 3
173

)T 38 (228
383

, 228
383

, 114
383

, 19
383

,− 228
383

,− 114
383

,− 38
383

,− 3
383

)T

18 (36
61

, 36
61

, 18
61

, 3
61

,− 36
61

,− 18
61

,− 6
61

,− 1
61

)T 39 (78
131

, 78
131

, 39
131

, 13
262

,− 78
131

,− 39
131

,− 13
131

,− 1
131

)T

19 (57
98

, 57
98

, 57
196

, 57
784

,− 57
98

,− 57
196

,− 19
196

,− 3
98

)T 40 (240
403

, 240
403

, 120
403

, 20
403

,− 240
403

,− 120
403

,− 40
403

,− 3
403

)T

20 (60
103

, 60
103

, 30
103

, 15
206

,− 60
103

,− 30
103

,− 10
103

,− 3
103

)T 41 (246
413

, 246
413

, 123
413

, 41
826

,− 246
413

,− 123
413

,− 41
413

,− 3
413

)T

21 (10
17

, 10
17

, 5
17

, 1
17

,− 10
17

,− 5
17

,− 5
51

,− 1
51

)T 42 (196
331

, 196
331

, 98
331

, 14
331

, 7
993

,− 196
331

,− 98
331

,− 98
993

,− 4
331

,− 1
993

)T

22 (132
223

, 132
223

, 66
223

, 11
223

,− 132
223

,− 66
223

,− 22
223

,− 3
223

)T 43 (1806
3049

, 1806
3049

, 903
3049

, 129
3049

, 43
6098

,− 1806
3049

,− 903
3049

,− 301
3049

,− 36
3049

,− 3
3049

)T

23 (138
233

, 138
233

, 69
233

, 23
466

,− 138
233

,− 69
233

,− 23
233

,− 3
233

)T 44 (1848
3119

, 1848
3119

, 924
3119

, 132
3119

, 22
3119

,− 1848
3119

,− 924
3119

,− 308
3119

,− 36
3119

,− 3
3119

)T

24 (16
27

, 16
27

, 8
27

, 4
81

,− 16
27

,− 8
27

,− 8
81

,− 1
81

)T 45 (630
1063

, 630
1063

, 315
1063

, 45
1063

, 15
2126

,− 630
1063

,− 315
1063

,− 105
1063

,− 12
1063

,− 1
1063

)T

We below demonstrate the case k = 4. The tuple of (s1, s2, s3) = (12 + ε, 13 + ε, 17 + ε) is used
as item sizes. Applying (ti,j) in (9) to (14), we have

A =



1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0
0 1 1 2 0 0 1 1 2 0 0 1 2 0 0 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 4 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 −1
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 1 0 −1
0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 1 −1

 .

From (15) we also have

b =(1, 1, 1, 0, 0, 0)T

c =(0, 1)T .

We find y = (12 ,
1
2 ,

1
2 ,−

1
2 ,−

1
4 ,−

1
4)

T in Table 3. This is feasible for (D), since

ATy = (0,−1

2
, 0, 0,−3

2
,−1,−1,−1

2
,−1

2
,−1,−1

2
,−1

2
, 0,−1

2
, 0, 0, 0,−1

2
,−1

4
,−1

4
, 1)T ≤ c.

Also, bTy = 3
2 is indeed equal to the value of “lower bound” for k = 4 in Table 2. The weak

duality theorem states that the optimal value of (P) is at least 3
2 .

Remark. For each k, the “solution” in Table 3 is in fact an optimal solution to (D). To prove
Lemma 8, it is sufficient just to present a feasible solution to (D). We therefore omit the proof
of optimality.

16

4 Concluding Remarks

While we have narrowed the gap between the upper and lower bounds for the case k = 2,
the gaps for k ≥ 3 still remain large. As we discussed in Section 3, there should be room for
improvement in our method. It is interesting to combine the method with a trick of making
slight differences in item size, such as subroutines in Section 2.

References

[BBG12] J. Balogh, J. Békési, and G. Galambos. New lower bounds for certain classes of bin
packing algorithms. Theor. Comput. Sci., 440-441:1–13, 2012.

[BCKK04] L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing
problems with cardinality constraints. Discrete Applied Mathematics, 143(1-3):238–
251, 2004.

[BE98] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

[CKP03] A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for ordered vector
packing problems. Naval Research Logistics, 50(1):58–69, 2003.

[EL10] L. Epstein and A. Levin. AFPTAS results for common variants of bin packing:
A new method for handling the small items. SIAM Journal on Optimization,
20(6):3121–3145, 2010.

[Eps06] L. Epstein. Online bin packing with cardinality constraints. SIAM J. Discrete
Math., 20(4):1015–1030, 2006.

[KP99] H. Kellerer and U. Pferschy. Cardinality constrained bin-packing problems. Annals
of Operations Research, 92(0):335–348, 1999.

[KSS75] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Analysis of several task-scheduling
algorithms for a model of multiprogramming computer systems. J. ACM, 22(4):522–
550, 1975.

[KSS77] K. L. Krause, V. Y. Shen, and H. D. Schwetman. Errata: “Analysis of several
task-scheduling algorithms for a model of multiprogramming computer systems”. J.
ACM, 24(3):527, 1977.

[RBLL89] P. V. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. On-line bin packing in
linear time. J. Algorithms, 10(3):305–326, 1989.

[Sei02] S. S. Seiden. On the online bin packing problem. J. ACM, 49(5):640–671, 2002.

[ST85] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Commun. ACM, 28(2):202–208, 1985.

[vV92] A. van Vliet. An improved lower bound for on-line bin packing algorithms. Inf.
Process. Lett., 43(5):277–284, 1992.

[Yao80] A. C. Yao. New algorithms for bin packing. J. ACM, 27(2):207–227, 1980.

17

