2 research outputs found

    Backpropagation Neural Ensemble for Localizing and Recognizing Non-Standardized Malaysia’s Car Plates

    Get PDF
    In this paper, we describe a research project that autonomously localizes and recognizes non-standardized Malaysian’s car plates using conventional Backpropagation algorithm (BPP) in combination with Ensemble Neural Network (ENN). We compared the results with the results obtained using simple Feed-Forward Neural Network (FFNN). This research aims to solve four main issues; (1) localization of car plates that has the same colour with the vehicle colour, (2) detection and recognition of car plates with varying sizes, (3) detection and recognition of car plates with different font types, and (4) detection and recognition of non-standardized car plates. The non-standardized Malaysian’s car plates are different from the normal plate as they contain italic characters, a combination of cursive characters, and different font types. The experimental results show that the combination of backpropagation and ENN can be effectively used to solve these four issues. The combination of BPP and ENN’s algorithm achieved a localization rate of 98% and a 97% in recognition rate. On the other hand, the combination of backpropagation and simple FFNN recorded a 96% recognition rate

    Digital image enhancement by brightness and contrast manipulation using Verilog hardware description language

    Get PDF
    A foggy environment may cause digitally captured images to appear blurry, dim, or low in contrast. This will impact computer vision systems that rely on image information. With the need for real-time image information, such as a plate number recognition system, a simple yet effective image enhancement algorithm using a hardware implementation is very much needed to fulfil the need. To improve images that suffer from low exposure and hazy, the hardware implementations are usually based on complex algorithms. Hence, the aim of this paper is to propose a less complex enhancement algorithm for hardware implementation that is able to improve the quality of such images. The proposed method simply combines brightness and contrast manipulation to enhance the image. In order to see the performance of the proposed method, a total of 100 vehicle registration number images were collected, enhanced, and evaluated. The evaluation results were compared to two other enhancement methods quantitatively and qualitatively. Quantitative evaluation is done by evaluating the output image using peak signal-to-noise ratio and mean-square error evaluation metrics, while a survey is done to evaluate the output image qualitatively. Based on the quantitative evaluation results, our proposed method outperforms the other two enhancement methods
    corecore