84,330 research outputs found

    Mixed reality participants in smart meeting rooms and smart home enviroments

    Get PDF
    Human–computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in a virtual meeting room, we discuss how remote meeting participants can take part in meeting activities and they have some observations on translating research results to smart home environments

    Enabling Self-aware Smart Buildings by Augmented Reality

    Full text link
    Conventional HVAC control systems are usually incognizant of the physical structures and materials of buildings. These systems merely follow pre-set HVAC control logic based on abstract building thermal response models, which are rough approximations to true physical models, ignoring dynamic spatial variations in built environments. To enable more accurate and responsive HVAC control, this paper introduces the notion of "self-aware" smart buildings, such that buildings are able to explicitly construct physical models of themselves (e.g., incorporating building structures and materials, and thermal flow dynamics). The question is how to enable self-aware buildings that automatically acquire dynamic knowledge of themselves. This paper presents a novel approach using "augmented reality". The extensive user-environment interactions in augmented reality not only can provide intuitive user interfaces for building systems, but also can capture the physical structures and possibly materials of buildings accurately to enable real-time building simulation and control. This paper presents a building system prototype incorporating augmented reality, and discusses its applications.Comment: This paper appears in ACM International Conference on Future Energy Systems (e-Energy), 201

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    Capturing Regular Human Activity through a Learning Context Memory

    Get PDF
    A learning context memory consisting of two main parts is presented. The first part performs lossy data compression, keeping the amount of stored data at a minimum by combining similar context attributes — the compression rate for the presented GPS data is 150:1 on average. The resulting data is stored in an appropriate data structure highlighting the level of compression. Elements with a high level of compression are used in the second part to form the start and end points of episodes capturing common activity consisting of consecutive events. The context memory is used to investigate how little context data can be stored containing still enough information to capture regular human activity

    Natural User Interface for Education in Virtual Environments

    Get PDF
    Education and self-improvement are key features of human behavior. However, learning in the physical world is not always desirable or achievable. That is how simulators came to be. There are domains where purely virtual simulators can be created in contrast to physical ones. In this research we present a novel environment for learning, using a natural user interface. We, humans, are not designed to operate and manipulate objects via keyboard, mouse or a controller. The natural way of interaction and communication is achieved through our actuators (hands and feet) and our sensors (hearing, vision, touch, smell and taste). That is the reason why it makes more sense to use sensors that can track our skeletal movements, are able to estimate our pose, and interpret our gestures. After acquiring and processing the desired – natural input, a system can analyze and translate those gestures into movement signals
    corecore