10,232 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    Asynchronous Joint Source-Channel Communication: An Information-Theoretic Perspective

    Get PDF
    Due to the increasing growth and demand for wireless communication services, new techniques and paradigms are required for the development of next generation systems and networks. As a first step to better differentiate between various options to develop future systems, one should consider fundamental theoretical problems and limitations in present systems and networks. Hence, some common ground between network information theory and mobile/wireless medium techniques should be explicitly addressed to better understand future generation trends. Among practical limitations, a major challenge, which is inherent and due to the physics of many mobile/wireless setups, is the problem of asynchronism between different nodes and/or clients in a wireless network. Although analytically convenient, the assumption of full synchronization between the end terminals in a network is usually difficult to justify. Thus, finding fundamental limits for communication systems under different types of asynchronism is essential to tackle real world problems. In this thesis, we study information theoretic limits that various multiuser wireless communication systems encounter under time or phase asynchronism between different nodes. In particular, we divide our research into two categories: phase asynchronous and time asynchronous systems. In the first part of this thesis, we consider several multiuser networks with phase fading communication links, i.e., all of the channels introduce phase shifts to the transmitted signals. We assume that the phase shifts are unknown to the transmitters as a practical assumption which results in a phase asynchronism between transmitter sides and receiver sides. We refer to these communication systems as phase incoherent (PI) communication systems and study the problem of communicating arbitrarily correlated sources over them. Specifically, we are interested in solving the general problem of joint source-channel coding over PI networks. To this end, we first present a lemma which is very useful in deriving necessary conditions for reliable communication of the sources over PI channels. Then, for each channel and under specific gain conditions, we derive sufficient conditions based on separate source and channel coding and show that the necessary and sufficient conditions match. Therefore, we are able to present and prove several separation theorems for channels under study under specific gain conditions. In the second part of this thesis, we consider time asynchronism in networks. In particular, we consider a multiple access channel with a relay as a general setup to model many wireless networks in which the transmitters are time asynchronous in the sense that they cannot operate at the same exact time. Based on the realistic assumption of a time offset between the transmitters, we again consider the problem of communicating arbitrarily correlated sources over such a time-asynchronous multiple access relay channel (TA-MARC). We first derive a general necessary condition for reliable communication. Then, by the use of separate source and channel coding and under specific gain conditions, we show that the derived sufficient conditions match with the general necessary condition for reliable communications. Consequently, we present a separation theorem for this class of networks under specific gain conditions. We then specialize our results to a two-user interference channel with time asynchronism between the encoders

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    • …
    corecore