10,929 research outputs found

    Capacity Region of the Broadcast Channel with Two Deterministic Channel State Components

    Full text link
    This paper establishes the capacity region of a class of broadcast channels with random state in which each channel component is selected from two possible functions and each receiver knows its state sequence. This channel model does not fit into any class of broadcast channels for which the capacity region was previously known and is useful in studying wireless communication channels when the fading state is known only at the receivers. The capacity region is shown to coincide with the UV outer bound and is achieved via Marton coding.Comment: 5 pages, 3 figures. Submitted to ISIT 201

    Secrecy Capacity Region of Some Classes of Wiretap Broadcast Channels

    Full text link
    This work investigates the secrecy capacity of the Wiretap Broadcast Channel (WBC) with an external eavesdropper where a source wishes to communicate two private messages over a Broadcast Channel (BC) while keeping them secret from the eavesdropper. We derive a non-trivial outer bound on the secrecy capacity region of this channel which, in absence of security constraints, reduces to the best known outer bound to the capacity of the standard BC. An inner bound is also derived which follows the behavior of both the best known inner bound for the BC and the Wiretap Channel. These bounds are shown to be tight for the deterministic BC with a general eavesdropper, the semi-deterministic BC with a more-noisy eavesdropper and the Wiretap BC where users exhibit a less-noisiness order between them. Finally, by rewriting our outer bound to encompass the characteristics of parallel channels, we also derive the secrecy capacity region of the product of two inversely less-noisy BCs with a more-noisy eavesdropper. We illustrate our results by studying the impact of security constraints on the capacity of the WBC with binary erasure (BEC) and binary symmetric (BSC) components.Comment: 19 pages, 8 figures, To appear in IEEE Trans. on Information Theor

    The Arbitrarily Varying Broadcast Channel with Degraded Message Sets with Causal Side Information at the Encoder

    Full text link
    In this work, we study the arbitrarily varying broadcast channel (AVBC), when state information is available at the transmitter in a causal manner. We establish inner and outer bounds on both the random code capacity region and the deterministic code capacity region with degraded message sets. The capacity region is then determined for a class of channels satisfying a condition on the mutual informations between the strategy variables and the channel outputs. As an example, we consider the arbitrarily varying binary symmetric broadcast channel with correlated noises. We show cases where the condition holds, hence the capacity region is determined, and other cases where there is a gap between the bounds.Comment: arXiv admin note: substantial text overlap with arXiv:1701.0334

    Cooperation with an Untrusted Relay: A Secrecy Perspective

    Full text link
    We consider the communication scenario where a source-destination pair wishes to keep the information secret from a relay node despite wanting to enlist its help. For this scenario, an interesting question is whether the relay node should be deployed at all. That is, whether cooperation with an untrusted relay node can ever be beneficial. We first provide an achievable secrecy rate for the general untrusted relay channel, and proceed to investigate this question for two types of relay networks with orthogonal components. For the first model, there is an orthogonal link from the source to the relay. For the second model, there is an orthogonal link from the relay to the destination. For the first model, we find the equivocation capacity region and show that answer is negative. In contrast, for the second model, we find that the answer is positive. Specifically, we show by means of the achievable secrecy rate based on compress-and-forward, that, by asking the untrusted relay node to relay information, we can achieve a higher secrecy rate than just treating the relay as an eavesdropper. For a special class of the second model, where the relay is not interfering itself, we derive an upper bound for the secrecy rate using an argument whose net effect is to separate the eavesdropper from the relay. The merit of the new upper bound is demonstrated on two channels that belong to this special class. The Gaussian case of the second model mentioned above benefits from this approach in that the new upper bound improves the previously known bounds. For the Cover-Kim deterministic relay channel, the new upper bound finds the secrecy capacity when the source-destination link is not worse than the source-relay link, by matching with the achievable rate we present.Comment: IEEE Transactions on Information Theory, submitted October 2008, revised October 2009. This is the revised versio

    On Cooperative Multiple Access Channels with Delayed CSI at Transmitters

    Full text link
    We consider a cooperative two-user multiaccess channel in which the transmission is controlled by a random state. Both encoders transmit a common message and, one of the encoders also transmits an individual message. We study the capacity region of this communication model for different degrees of availability of the states at the encoders, causally or strictly causally. In the case in which the states are revealed causally to both encoders but not to the decoder we find an explicit characterization of the capacity region in the discrete memoryless case. In the case in which the states are revealed only strictly causally to both encoders, we establish inner and outer bounds on the capacity region. The outer bound is non-trivial, and has a relatively simple form. It has the advantage of incorporating only one auxiliary random variable. We then introduce a class of cooperative multiaccess channels with states known strictly causally at both encoders for which the inner and outer bounds agree; and so we characterize the capacity region for this class. In this class of channels, the state can be obtained as a deterministic function of the channel inputs and output. We also study the model in which the states are revealed, strictly causally, in an asymmetric manner, to only one encoder. Throughout the paper, we discuss a number of examples; and compute the capacity region of some of these examples. The results shed more light on the utility of delayed channel state information for increasing the capacity region of state-dependent cooperative multiaccess channels; and tie with recent progress in this framework.Comment: 54 pages. To appear in IEEE Transactions on Information Theory. arXiv admin note: substantial text overlap with arXiv:1201.327

    Wiretap and Gelfand-Pinsker Channels Analogy and its Applications

    Full text link
    An analogy framework between wiretap channels (WTCs) and state-dependent point-to-point channels with non-causal encoder channel state information (referred to as Gelfand-Pinker channels (GPCs)) is proposed. A good sequence of stealth-wiretap codes is shown to induce a good sequence of codes for a corresponding GPC. Consequently, the framework enables exploiting existing results for GPCs to produce converse proofs for their wiretap analogs. The analogy readily extends to multiuser broadcasting scenarios, encompassing broadcast channels (BCs) with deterministic components, degradation ordering between users, and BCs with cooperative receivers. Given a wiretap BC (WTBC) with two receivers and one eavesdropper, an analogous Gelfand-Pinsker BC (GPBC) is constructed by converting the eavesdropper's observation sequence into a state sequence with an appropriate product distribution (induced by the stealth-wiretap code for the WTBC), and non-causally revealing the states to the encoder. The transition matrix of the state-dependent GPBC is extracted from WTBC's transition law, with the eavesdropper's output playing the role of the channel state. Past capacity results for the semi-deterministic (SD) GPBC and the physically-degraded (PD) GPBC with an informed receiver are leveraged to furnish analogy-based converse proofs for the analogous WTBC setups. This characterizes the secrecy-capacity regions of the SD-WTBC and the PD-WTBC, in which the stronger receiver also observes the eavesdropper's channel output. These derivations exemplify how the wiretap-GP analogy enables translating results on one problem into advances in the study of the other
    corecore