5,480 research outputs found

    The stochastic geometry of unconstrained one-bit data compression

    Get PDF
    A stationary stochastic geometric model is proposed for analyzing the data compression method used in one-bit compressed sensing. The data set is an unconstrained stationary set, for instance all of Rn\mathbb{R}^n or a stationary Poisson point process in Rn\mathbb{R}^n. It is compressed using a stationary and isotropic Poisson hyperplane tessellation, assumed independent of the data. That is, each data point is compressed using one bit with respect to each hyperplane, which is the side of the hyperplane it lies on. This model allows one to determine how the intensity of the hyperplanes must scale with the dimension nn to ensure sufficient separation of different data by the hyperplanes as well as sufficient proximity of the data compressed together. The results have direct implications in compressive sensing and in source coding.Comment: 29 page

    Downlink SDMA with Limited Feedback in Interference-Limited Wireless Networks

    Full text link
    The tremendous capacity gains promised by space division multiple access (SDMA) depend critically on the accuracy of the transmit channel state information. In the broadcast channel, even without any network interference, it is known that such gains collapse due to interstream interference if the feedback is delayed or low rate. In this paper, we investigate SDMA in the presence of interference from many other simultaneously active transmitters distributed randomly over the network. In particular we consider zero-forcing beamforming in a decentralized (ad hoc) network where each receiver provides feedback to its respective transmitter. We derive closed-form expressions for the outage probability, network throughput, transmission capacity, and average achievable rate and go on to quantify the degradation in network performance due to residual self-interference as a function of key system parameters. One particular finding is that as in the classical broadcast channel, the per-user feedback rate must increase linearly with the number of transmit antennas and SINR (in dB) for the full multiplexing gains to be preserved with limited feedback. We derive the throughput-maximizing number of streams, establishing that single-stream transmission is optimal in most practically relevant settings. In short, SDMA does not appear to be a prudent design choice for interference-limited wireless networks.Comment: Submitted to IEEE Transactions on Wireless Communication

    Statistical Multiplexing and Traffic Shaping Games for Network Slicing

    Full text link
    Next generation wireless architectures are expected to enable slices of shared wireless infrastructure which are customized to specific mobile operators/services. Given infrastructure costs and the stochastic nature of mobile services' spatial loads, it is highly desirable to achieve efficient statistical multiplexing amongst such slices. We study a simple dynamic resource sharing policy which allocates a 'share' of a pool of (distributed) resources to each slice-Share Constrained Proportionally Fair (SCPF). We give a characterization of SCPF's performance gains over static slicing and general processor sharing. We show that higher gains are obtained when a slice's spatial load is more 'imbalanced' than, and/or 'orthogonal' to, the aggregate network load, and that the overall gain across slices is positive. We then address the associated dimensioning problem. Under SCPF, traditional network dimensioning translates to a coupled share dimensioning problem, which characterizes the existence of a feasible share allocation given slices' expected loads and performance requirements. We provide a solution to robust share dimensioning for SCPF-based network slicing. Slices may wish to unilaterally manage their users' performance via admission control which maximizes their carried loads subject to performance requirements. We show this can be modeled as a 'traffic shaping' game with an achievable Nash equilibrium. Under high loads, the equilibrium is explicitly characterized, as are the gains in the carried load under SCPF vs. static slicing. Detailed simulations of a wireless infrastructure supporting multiple slices with heterogeneous mobile loads show the fidelity of our models and range of validity of our high load equilibrium analysis

    A Stochastic-Geometry Approach to Coverage in Cellular Networks with Multi-Cell Cooperation

    Full text link
    Multi-cell cooperation is a promising approach for mitigating inter-cell interference in dense cellular networks. Quantifying the performance of multi-cell cooperation is challenging as it integrates physical-layer techniques and network topologies. For tractability, existing work typically relies on the over-simplified Wyner-type models. In this paper, we propose a new stochastic-geometry model for a cellular network with multi-cell cooperation, which accounts for practical factors including the irregular locations of base stations (BSs) and the resultant path-losses. In particular, the proposed network-topology model has three key features: i) the cells are modeled using a Poisson random tessellation generated by Poisson distributed BSs, ii) multi-antenna BSs are clustered using a hexagonal lattice and BSs in the same cluster mitigate mutual interference by spatial interference avoidance, iii) BSs near cluster edges access a different sub-channel from that by other BSs, shielding cluster-edge mobiles from strong interference. Using this model and assuming sparse scattering, we analyze the shapes of the outage probabilities of mobiles served by cluster-interior BSs as the average number KK of BSs per cluster increases. The outage probability of a mobile near a cluster center is shown to be proportional to e−c(2−ν)2Ke^{-c(2-\sqrt{\nu})^2K} where ν\nu is the fraction of BSs lying in the interior of clusters and cc is a constant. Moreover, the outage probability of a typical mobile is proved to scale proportionally with e−c′(1−ν)2Ke^{-c' (1-\sqrt{\nu})^2K} where c′c' is a constant.Comment: 5 page
    • …
    corecore