16 research outputs found

    Capacity of Cellular Networks with Femtocache

    Full text link
    The capacity of next generation of cellular networks using femtocaches is studied when multihop communications and decentralized cache placement are considered. We show that the storage capability of future network User Terminals (UT) can be effectively used to increase the capacity in random decentralized uncoded caching. We further propose a random decentralized coded caching scheme which achieves higher capacity results than the random decentralized uncoded caching. The result shows that coded caching which is suitable for systems with limited storage capabilities can improve the capacity of cellular networks by a factor of log(n) where n is the number of nodes served by the femtocache.Comment: 6 pages, 2 figures, presented at Infocom Workshops on 5G and beyond, San Francisco, CA, April 201

    Optimizing Pilot Overhead for Ultra-Reliable Short-Packet Transmission

    Full text link
    In this paper we optimize the pilot overhead for ultra-reliable short-packet transmission and investigate the dependence of this overhead on packet size and error probability. In particular, we consider a point-to-point communication in which one sensor sends messages to a central node, or base-station, over AWGN with Rayleigh fading channel. We formalize the optimization in terms of approximate achievable rates at a given block length, pilot length, and error probability. This leads to more accurate pilot overhead optimization. Simulation results show that it is important to take into account the packet size and the error probability when optimizing the pilot overhead.Comment: To be published on IEEE ICC 2017 Communication Theory Symposiu

    QoE-driven Cache Placement for Adaptive Video Streaming: Minding the Viewport

    Get PDF
    International audienceTo handle the increasing demand for video streaming, ISP's and service providers use edge servers to cache video content to reduce the rush on their servers, balance the load between them and over the network, and smooth out the traffic variability. The dynamic adaptive streaming over HTTP protocol (DASH) makes videos available in multiple representations, and end-users can switch video resolution as a function of their network conditions and terminal display capacity (e.g., bandwidth, screen resolution). In this context, we study a viewportaware caching optimization problem for dynamic adaptive video streaming that appropriately considers the client viewport size and access speed, the join time, and the characteristics of videos. We formulate and study the proposed optimization problem as an Integer Linear Program (ILP) that balances minimal join time and maximal visual experience, subject to the cache storage capacity. Our framework sheds light on optimal caching performance. Our proposed heuristic provides guidelines on the videos, and the representations of each video, to cache based on the video popularity, its encoding information, and the distribution of end-user display capacity and access speed in a way to maximize the overall end-user QoE

    Power Allocation and Cooperative Diversity in Two-Way Non-Regenerative Cognitive Radio Networks

    Full text link
    In this paper, we investigate the performance of a dual-hop block fading cognitive radio network with underlay spectrum sharing over independent but not necessarily identically distributed (i.n.i.d.) Nakagami-mm fading channels. The primary network consists of a source and a destination. Depending on whether the secondary network which consists of two source nodes have a single relay for cooperation or multiple relays thereby employs opportunistic relay selection for cooperation and whether the two source nodes suffer from the primary users' (PU) interference, two cases are considered in this paper, which are referred to as Scenario (a) and Scenario (b), respectively. For the considered underlay spectrum sharing, the transmit power constraint of the proposed system is adjusted by interference limit on the primary network and the interference imposed by primary user (PU). The developed new analysis obtains new analytical results for the outage capacity (OC) and average symbol error probability (ASEP). In particular, for Scenario (a), tight lower bounds on the OC and ASEP of the secondary network are derived in closed-form. In addition, a closed from expression for the end-to-end OC of Scenario (a) is achieved. With regards to Scenario (b), a tight lower bound on the OC of the secondary network is derived in closed-form. All analytical results are corroborated using Monte Carlo simulation method

    Spatial and Social Paradigms for Interference and Coverage Analysis in Underlay D2D Network

    Get PDF
    The homogeneous Poisson point process (PPP) is widely used to model spatial distribution of base stations and mobile terminals. The same process can be used to model underlay device-to-device (D2D) network, however, neglecting homophilic relation for D2D pairing presents underestimated system insights. In this paper, we model both spatial and social distributions of interfering D2D nodes as proximity based independently marked homogeneous Poisson point process. The proximity considers physical distance between D2D nodes whereas social relationship is modeled as Zipf based marks. We apply these two paradigms to analyze the effect of interference on coverage probability of distance-proportional power-controlled cellular user. Effectively, we apply two type of functional mappings (physical distance, social marks) to Laplace functional of PPP. The resulting coverage probability has no closed-form expression, however for a subset of social marks, the mark summation converges to digamma and polygamma functions. This subset constitutes the upper and lower bounds on coverage probability. We present numerical evaluation of these bounds on coverage probability by varying number of different parameters. The results show that by imparting simple power control on cellular user, ultra-dense underlay D2D network can be realized without compromising the coverage probability of cellular user.Comment: 10 pages, 10 figure

    Secure and Private Cloud Storage Systems with Random Linear Fountain Codes

    Full text link
    An information theoretic approach to security and privacy called Secure And Private Information Retrieval (SAPIR) is introduced. SAPIR is applied to distributed data storage systems. In this approach, random combinations of all contents are stored across the network. Our coding approach is based on Random Linear Fountain (RLF) codes. To retrieve a content, a group of servers collaborate with each other to form a Reconstruction Group (RG). SAPIR achieves asymptotic perfect secrecy if at least one of the servers within an RG is not compromised. Further, a Private Information Retrieval (PIR) scheme based on random queries is proposed. The PIR approach ensures the users privately download their desired contents without the servers knowing about the requested contents indices. The proposed scheme is adaptive and can provide privacy against a significant number of colluding servers.Comment: 8 pages, 2 figure
    corecore