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Abstract—To handle the increasing demand for video stream-
ing, ISP’s and service providers use edge servers to cache video
content to reduce the rush on their servers, balance the load
between them and over the network, and smooth out the traffic
variability. The dynamic adaptive streaming over HTTP protocol
(DASH) makes videos available in multiple representations, and
end-users can switch video resolution as a function of their
network conditions and terminal display capacity (e.g., band-
width, screen resolution). In this context, we study a viewport-
aware caching optimization problem for dynamic adaptive video
streaming that appropriately considers the client viewport size
and access speed, the join time, and the characteristics of videos.
We formulate and study the proposed optimization problem
as an Integer Linear Program (ILP) that balances minimal
join time and maximal visual experience, subject to the cache
storage capacity. Our framework sheds light on optimal caching
performance. Our proposed heuristic provides guidelines on
the videos, and the representations of each video, to cache
based on the video popularity, its encoding information, and the
distribution of end-user display capacity and access speed in a
way to maximize the overall end-user QoE.

I. INTRODUCTION

The internet hosts plenty of services of all categories putting
considerable pressure on its infrastructure, with internet video
traffic being unavoidably the nightmare of operators. It is
expected that by 2023, video traffic will account for 73% of
the global mobile data traffic [1]. Lately, with the pandemic
and the mobility restrictions, real-time entertainment based on
streaming video and audio has become even more critical and
has accelerated this continued growth [2]. End-users expect the
best quality and can be frustrated by any service interruption,
hence resulting in considerable economic losses for providers.
In light of this rapid growth and increased economic impact,
internet service providers feel more pressure to optimize their
networks to meet the expectations of their end-users. For
example, to prioritize or load balance traffic efficiently, ISP’s
need information on end-users QoE rather than just capturing
the network Quality of Service (QoS). But, video QoE is
dependent on the content itself (i.e., the video bitrate and
resolution) and on the application-level QoS metrics such as
the start-up delay, the duration of stalls, and the resolution
switches [3]–[5]. It also depends on the viewport size [6],
which can be defined as the number of pixels, both vertically
and horizontally, on which the video is displayed. However,
in the era of data encryption, all these metrics impacting the
end-user QoE can be hard to infer.

Caching is another solution emerging through the surface.
The main question is how to select the appropriate video to
cache to maximize the overall users’ QoE without exceeding
the cache storage capacity. Several papers in the literature
tackle the caching aspect for multimedia, in particular for
video content (Sec., II). However, in the light of diverse
and advanced equipment, the limitation of existing caching
schemes and QoE-driven optimizations is overlooking the
end-user display capacity. Studies have shown that different
viewport resolutions have different bandwidth requirements
even for the same QoE level [6]. On the same topic, we
were able to leverage the existing relationship between screen
resolution, video resolution, and QoE to formulate a resource
allocation problem that maximizes the QoE for a set of
users streaming videos over the same bottleneck link [7]. In
this work, we propose a new cache placement optimization
framework for adaptive video streaming that jointly accounts
for the impact of end-user display capacity and video charac-
teristics (e.g., encoding bitrate and popularity) in addition to
the internet access speed. In plan, we formulate the optimal
cache placement problem as an Integer Linear Program (ILP)
aiming to maximize the average QoE over a set of users with a
constraint on the cache storage capacity. The optimal solution,
using CPLEX [8], can find the best selection of videos and
representations to cache, ensuring minimal join time and
maximal visual experience. Further, we develop a practical
greedy caching heuristic using the optimal placement’s foot-
print, offering a near-optimal performance in terms of average
QoE per request. Overall, the main contributions of our paper
are as follows; (i) We formulate the optimal cache placement
problem for adaptive video streaming, the proposed framework
leverages the users’ viewport size heterogeneity and allocates
the cache storage based on an objective function reflecting the
QoE relation to the video content (bitrate), the application-
level QoS (join time), the viewport size and the access speed
distribution; (ii) We propose a near-optimal heuristic called
QoEscoreMax to solve for the optimization problem in a
greedy way. We introduce a metric called QoEscore to rank
video representations and decide about caching them or not.
This metric incorporates the expected QoE resulting from
caching a particular representation of a certain video; (iii)
We conduct simulations with multiple settings and show that
our heuristic outperforms legacy caching strategies in terms of
QoE gain.



II. RELATED WORK

Caching is an attractive solution for handling the increasing
demand for video content. In particular, mobile edge caching
(MEC) leverages storage capacity within the network to host
popular multimedia content, easing video traffic delivery,
smoothing its variability, and reducing congestion and ac-
cess delay [9], [10]. Authors in [11] discuss thoroughly the
benefits and limitations of caching content at the wireless
edge and the needs to be considered for designing cache
placement strategies. They also introduce methods to predict
the popularity distribution and user preferences. Always in
the wireless context, researchers have proposed the use of
small cells called ”helpers” to add caching functionality at
the cellular access. The femtocache approach incorporates
a wireless distributed caching network that assists the base
station by handling requests of popular files that have been
cached, thus minimizing the download delay of users [12],
[13]. The work in [14] formulates a joint routing and caching
problem while considering the bandwidth capacity constraints
of the small cell base stations (SBS), aiming to maximize the
fraction of content requests served locally by the deployed
SBS’s. Sengupta et al. propose an architecture to identify
popular multimedia content by proactively pushing it close to
the edge of the wireless network, thereby alleviating backhaul
load [15].

To the best of our knowledge, the literature is still missing
a study that accounts for the viewport resolution and its
heterogeneity across the viewing users when addressing video
caching. This constitutes the main focus of our paper.

III. FRAMEWORK AND SYSTEM MODEL

A. Framework

We consider a single edge cache scenario as depicted in
Fig. 1. The origin server stores a catalog of video files, each of
which is encoded into different representations. At the access,
we have an edge server able to prefetch video files and cache
them in advance. In general, edge servers are geographically
closer to the users; the origin server leverages their caching
storage to push popular content to the network edge during
the off-peak hours, reducing the load on the origin server
and resulting in more optimized delay and more convenient
user experience. Usually, content providers put in place several
edge servers to be as close as possible to different end-users,
and one user can connect to several edge servers at a time.
However, in this first study and to confirm the sound of
our approach, we consider the case of one edge server. This
assumption is similar to considering end-users able to connect
to one edge server [16], which is also equivalent to optimize
for each edge server individually.

In our context, whenever a client wants to play a video, it
sends via its DASH client a request to the origin server, which
gets redirected to the closest edge server, delivering back the
highest video representation available and supported by the
client network connection. If multiple representations of the
requested video are available, the edge server will deliver back

Fig. 1: Framework description

the one affordable by the client connection and her terminal
display capacity. Usually, when no representation is found on
the edge server, the user request is served directly by the origin
server, delivering the best video representation affordable by
the bottleneck link between the end-user and the origin server.

B. System model

We consider a catalog of F video files available at the origin
server. Each video f ∈ F is available in R representations,
such that ∀ r ∈ R and ∀ f ∈ F , Bf,r is the encoding bitrate
of the representation r of video f . Moreover, we consider the
R representations of each video to be ranked in increasing
order of bitrates such that Bf,r−1 ≤ Bf,r, 1 < r ≤ |R|.
We will also assume that all videos have the same duration
T . Such assumption has often been adopted in the literature
for simplicity and with no loss of generality [16]. Let Ec
be the cache of the edge server, and let Sc be its available
cache storage capacity in Bytes. On the other hand, let D
denote the set of users’ devices that request videos and that
are eligible to communicate with Ec. Each d ∈ D reaches
Ec with a download rate capacity equal to cd which we
assume to be fully dedicated to the video streaming of the
device. This capacity, already captured by the DASH client,
can be approximated from past delivered chunks. Moreover,
we denote by vd the viewport resolution of device d. As for
content popularity distribution, we assume it to be stationary
over the optimization period, and we consider requests to be
independent of each other following the well-known Indepen-
dent Reference Model. We denote by Pf the popularity of
video f and we normalize it in such a way that it becomes
equal to the probability that any request issued by any device
d ∈ D hits video f independently of the other requests [16].

We aim for a cache placement decision to be made by the
origin server, or any other controller, in a discrete-time manner.
In terms of end-user viewport size (vd), content providers have
access to this information as it is communicated between the
DASH client and the DASH server. Such data can be inferred
using machine learning with features calculated on the video
encrypted traffic [17].

C. QoE modeling

The video QoE models in state of the art focus mainly on
application-level QoS metrics. However, the viewport size is
also an important factor impacting the visual experience.



1) From bitrate to QoE: We capture the relationship be-
tween the viewport size and the selected video resolution (e.g.,
encoding bitrate) and the latter’s impact on the QoE. We
leverage an exponential QoE model calibrated offline using
an open-source dataset [6]. This model maps the encoding
bitrate, zBR, with the perceived user experience, zMOS , for
a set of standard viewport sizes. Using the dataset in [6],
we extrapolate a vector Z where each entry has two values
(zBR,zMOS) then use the mean square error method to fit
curves according to Equation (1). In plain, the βvd derived
with curve fitting describes the shape of the function for
the viewport resolution of the device d, and QoEmax is the
maximum anticipated QoE value.

QoEvd =
exp

QoEmax(1− e−βvd
x). (1)

2) From join time to QoE: We also account for the join
time (initial delay), which is the time it takes the video to
start playing out. According to authors in [18], users start
abandoning the video session after 2 seconds of join time, and
80% of them leave the session when their join time exceeds
60 seconds. We consider a logarithmic model for the impact
of the join time on the QoE as proposed in [19]. Equation (2)
provides a version of this model fitted by the authors of [19]
using a crowd-sourced dataset of YouTube video streaming.
In this equation, joind is the join time experienced by device
d, which can be set to the time needed to fill up the playout
buffer on the device. Equation (3) provides an estimation of
this time using the encoding bitrate of the representation r of
video f , Bf,r, the playout buffer size in seconds, δ, and the
user connection speed cd.

QoEjoind
= −0.963× log(joind + 5.381) + 5, (2)

joind =
δ ×Bf,r

cd
. (3)

IV. VIEWPORT AWARE OPTIMAL CACHE PLACEMENT

The viewport-aware cache placement problem for adaptive
video streaming can be described as follows. Given a cata-
log of videos and the different available representations, the
video popularity distribution, the end-user maximum down-
load speed, the end-user viewport resolution, select the most
rewarding set of video representations to be cached such that
the total system utility is maximized as constrained to cache
storage capacity.

A. Utility function

For simplicity and without loss of generality, we consider a
caching system where a representation of a video file is either
fully cached or not cached at all. We assume that any repre-
sentation can be played out on any viewport and that devices
have different viewport resolutions and internet connection
speeds. Further, any representation exceeding the resolution
of the viewport brings the maximum level of QoE [20]. In
this context representing better the reality, the decision on the

best representations to cache becomes more complex to solve.
To reach an optimal solution, we first start by introducing a
binary variable αf,r for the action of caching a representation
or not. We then complement it with another binary variable
per device d called γdf,r that specifies which representation of
video f is served by the cache to device d in case one or
more representations of the video are available in the cache.
Otherwise, the request is served by the origin server.

αf,r =

{
1, if file(f, r) cached
0, otherwise

(4)

γdf,r =

{
1, if file(f, r) served to d
0, otherwise

(5)

We define the QoE-driven utility function for a request
issued by device d as the average QoE reward overall videos
of the catalog while conditioning on the viewport resolution
and the device’s connection speed d. We write it as a weighted
sum of the two QoE functions defined in Section III-C:

Qgaind =
∑
f∈F

Pf
∑
r∈R

γdf,r × (a×QoEvd + b×QoEjoind
).

(6)
(a, b) are system parameters that can be tuned to adjust the
importance of each QoE aspect.

B. Problem formulation

The QoE-driven cache placement problem for adaptive
streaming can be formulated as an Integer Linear Program
(ILP) in the following way:

max
α,γ

∑
d∈D

Qgaind (7)

subject to:
∑
f∈F

∑
r∈R

αf,r ×Bf,r × T ≤ Sc, (8)∑
r∈R

γdf,r ≤ 1, ∀f ∈ F , ∀d ∈ D, (9)

γdf,r ≤ αf,r, ∀f ∈ F , ∀r ∈ R, ∀d ∈ D,
(10)

αf,r ∈ {0, 1}, (11)

γdf,r ∈ {0, 1}. (12)

In this problem formulation, the objective is to maximize the
overall QoE reward summed over the set of devices as defined
in (7) and (6), while considering the network conditions, the
video characteristics (e.g., popularity and encoding bitrate) and
the end-user viewport size. The constraint in (8) represents
the cache size constraint, with Bf,r ∗ T being the part of
the cache occupied if we cache file (f, r). The constraint
in (9) makes sure that each device can only download one
representation per cached video. The constraint in (10) estab-
lishes the relationship between the two decision variables such
that a video representation can be served only if it is already
cached. Finally, the constraints in (11) and (12) define the
binary decisions of caching and serving, respectively.



C. QoEscoreMax

We present a greedy heuristic named QoEscoreMax based
on the notion of QoEscore. The QoEscore is a new metric
we introduce to calculate for each video representation the
QoE gain that would result from caching it, summed over the
set of devices. Following the same reasoning as in Eq. (6), we
write:

QoEscoref,r =
∑
d∈D

Pf ∗ (a ∗QoEvd + b ∗QoEjoind
).

To further account for the cache space occupied by the
video file, we normalize the score by the square of its
volume in Bytes, Bf,r ∗ T 1. We use the normalized score
to rank representations in decreasing order of QoE gain.
The QoEscoreMax algorithm caches files having the highest
QoEscore in the limit of the cache storage.

By studying the footprint of the optimal solution as solved
by CPLEX, we found out that depending on the network
conditions and the viewport resolution distribution. We might
only need one representation to hit the optimal. Following
this optimal footprint, we update QoEscoreMax to limit
the number of representations per video. Overall, we it-
erate over the QoEscore ranked list with three possible
options: either replacing, adding, or simply skipping. For
instance, for file (f, r), if we do not have the previous
representation cached (e.g., cachedf,r−1 = 0), we add the
(f, r) representation directly to the cache while increasing
the cache occupancy, otherwise, a delatQoEgain is com-
puted between the two cache states: (1) the new repre-
sentation replaces the previous one, and (2) the new rep-
resentation is skipped. A value of delatQoEgain positive
means replacing the previous representation is beneficial and
so is taken. Otherwise, no action is taken until the follow-
ing representation of video f is found in the ranked list
of QoEscore. This heuristic is detailed in Algorithm 1.

Result: Cached − binary placement list (F ,R)
QoEscore(F ,R), Sc, cacheocc, T, B (F ,R)
while B(f,r) ∗ T + cacheocc ≤ Sc do

if cached(f,r−1) = 0 then
cached(f,r) = 1
cacheocc = cacheocc +B(f,r) ∗ T

else
if deltaQoEgain(file(f,r), file(f,r-1)) ≥ 0 then

cached(f,r) = 1
cached(f,r−1) = 0
cacheocc = cacheocc −B(f,r−1) ∗ T
cacheocc = cacheocc +B(f,r) ∗ T

end
end
(f, r) =QoEscore.nextkey

end

Algorithm 1: QoEscoreMax

1The normalization by the square of the volume was shown empirically to
provide better results than the normalization by the volume itself.

In terms of complexity, assuming the lookup operations
of O(1) (i.e., hash maps), the running time of the proposed
QoEscoreMax greedy algorithm is O((FR)2D), resulting
in polynomial time complexity. The CPLEX provides the
optimal solution using the branch-and-cut search. This method
follows a search tree consisting of nodes representing a relaxed
LP subproblem. Each subproblem can be solved using the
SIMPLEX method with exponential time complexity.

V. PERFORMANCE EVALUATION

To assess the efficiency of our approach, we compare
it to state of the art approaches such as popularity-based
caching, which takes into consideration the video popular-
ity [16], [21] and Femtocaching which minimizes the average
download delay of video content [13]. Beside our heuristic
QoEscoreMax, we study different variants of our optimal
solution, in particular we show results for (i) ScreenCache
which does not put any limit on the number of cached
representations per video, and (ii) 1 − rep − ScreenCache
and 2 − rep − ScreenCache which limit the number of
cached representations per video to maximum 1 (

∑
r∈R

αf,r ≤

1) and 2 (
∑
r∈R

αf,r ≤ 2) representations, respectively. For

popularity-based caching, we implement a greedy version
called PopularityCache that caches representations in in-
creasing bitrate order using the popularity ranking. For
FemtoCache, we use CPLEX to get its optimal solution
leveraging the video popularity and the network conditions.

A. Simulation settings

We develop a numerical simulator in Python where videos
are cached and QoE calculated according to Eq. (1), (2)
and (3). We consider a network of 20 devices and sam-
ple the devices’ viewports over a set of standard viewport
sizes (420x240, 640x360, 850x480, 1280x720, 1920x1080). In
terms of network access, we consider two scenarios depicting
a case where users have either high download rates (from 10
to 18 Mbps) or poor/medium download rates (from 1 to 7
Mbps). As for video content, we consider a catalog of 20
videos of same duration T = 60s, each video is encoded in
7 representations with encoding bitrates (0.25, 0.55, 0.95, 1.5,
2.6, 5, 8 Mbps). We further assume that the popularity of the
videos follows a Zipf distribution with parameter 0.56 [22].
Last, the storage capacity is varied as multiple of the average
size of a video representation.

At this stage, we consider a = b = 0.5 in Eq. (6), such
that the encoding bitrate and the join time have the same
importance on the user experience. To compare the different
caching strategies, we use the metric AverageQoE/request,
representing the average perceived QoE over the set of devices
and videos. Each request targeting a random video in the cata-
log will be potentially served by the cache given the selection
of cached representations and following the process described
in Sec. III. This metric, between 0 and 4.5 (maximum QoE),
also includes the notion of hit/miss, as the cache misses will
result in zero contribution to the QoEgain. We do not consider



(a) Fast internet accesses

(b) Poor/Medium internet accesses

Fig. 2: Average QoE per request, uniform viewport
distribution

the QoE of downloading from the origin server in case of
a miss because we aim at optimizing the cache behavior
independently of the internet backbone.

B. Simulation results

For space constraints, we only show results related to
uniform viewport resolution distribution. Other viewport reso-
lution distributions have demonstrated similar behavior as the
one we will show next.

We start with the scenario of high access rates. We plot
in Fig. 2(a) the AverageQoE/request vs. cache capacity,
viewports of the 20 devices were sampled uniformly. Here,
the optimal ScreenCache derived by the CPLEX results in
the same QoE as 1 − rep − ScreenCache and 2 − rep −
ScreenCache, suggesting that one representation per video
can strike the optimal. On the other hand, FemtoCache and
PopularityCache perform similarly, and below the optimal,
the reason is that PopularityCache by proceeding in increas-
ing order of bitrates ends up giving priority to the smallest
representations, which results in almost the same behavior as
the FemtoCache scheme which tries to minimize the average
file download delay. Meanwhile, QoEscoreMax outperforms
the previous two caching strategies and highlights a near-
optimal performance. Thanks to using the QoEscore metric,
QoEscoreMax favorites the most rewarding representations
making possible the caching of other than the lowest rep-
resentation if needed by some viewports and some access
links. Large viewport resolutions with good internet access
make schemes focusing on minimizing the file download
delay less efficient than the optimal that cache directly those
representations providing the maximum QoE gain.

In a second scenario, we consider devices with poor to
medium internet access (i.e., part of devices cannot accom-

Fig. 3: QoE vs catalog size

modate all representations). This scenario is more challenging
as it requires caching a mix of representations depending on
the access speed and the viewport. Here, one can expect 1−
rep−ScreenCache to diverge from unlimited ScreenCache
as the cache size increases. As we can observe in Fig. 2(b),
the 1 − rep − ScreenCache scheme starts indeed diverging
from the optimal as the cache size increases. Finding one
representation per video that approximates well the optimal
for all viewports is no longer possible as some accesses are
slow and cannot accommodate high-quality representations.
However, we can see that the 2−rep−ScreenCache keeps up
and shows almost the same behavior as the unlimited optimal.
To further understand this behavior, we analyze the footprint of
ScreenCache; the optimal considers two representations for
popular videos while holding the least popular videos to one
representation. QoEscoreMax sustains its good performance
through the different viewport distributions.

Moreover, we test the behavior of our solution for a larger
video catalog. We plot in Fig. 3 the average QoE per request
for the scenario of good network conditions while scaling up
the catalog size at a fixed cache size of ten times the average
representation size (10 ∗ Avg(Bf,r) ∗ T Mbits). Overall, the
QoE value is negatively correlated with the catalog size for
all caching strategies, making sense since the storage capacity
remains the same and the pressure on the cache increases.
However, the decline of ScreenCache and QoEscoreMax
is slower than FemtoCache and PopularityCache as the
former can better utilize the available storage by caching
the most rewarding content directly rather than caching low-
quality videos for unpopular content.

VI. SENSITIVITY ANALYSIS

Here, we evaluate the impact of the QoE model parameters
on the cache placement strategy. We study the impact of the
balance between join time and bitrate, and show results for
good network conditions and uniform viewport distribution.

1) Video bitrate over join time: In this part, we give more
importance to QoEvd linking the bitrate to the QoE, with
a = 0.9 and b = 0.1. We plot in Fig. 4(a) the average
QoE per request (plus its standard deviation) for different
viewport sizes and different caching schemes. Overall, we
observe that the QoE decreases as we move toward larger
viewports. Between the caching schemes, ScreenCache and
QoEscoreMax result in almost the same QoE level per view-



(a) Bitrate over join time

(b) Join time over bitrate

Fig. 4: Average QoE per viewport

port resolution, while FemtoCache and PopularityCache
fall behind, especially for large screens.

2) Join time over video bitrate: Here, we assume that
the QoE model in Eq. (6) is mostly based on the join time
by considering a = 0.1 and b = 0.9. Since QoEjoind

is
negatively correlated with joind (Eq. (2) and (3)), one would
expect the optimal solution to be selecting representations with
smallest encoding rate as they reduce the join time. Differently
speaking, the model now largely prefers the smoothness of
the playout on the quality of the rendered resolution, which
is closer in mind to existing placement schemes that seek to
minimize the file download delay by caching first the low
representations. We illustrate the obtained results in Fig. 4(b).
When favoring the join time, and regardless of the viewport
size, the different caching schemes converge to almost the
same QoE level, thus, caching almost the same content.

VII. CONCLUSION AND FUTURE WORK

In this work, we study a QoE-driven cache placement
optimization for adaptive video streaming while accounting for
the end-user viewport. We formulate the problem as an ILP
and derive the optimal selection of videos and representations
to be cached for different internet accesses and viewport
size distributions. We also present QoescoreMax, a practical
caching heuristic with near-optimal performance. Simulation
results show that our solution strikes the trade-off between op-
timal QoE and efficient storage management. Moreover, they
provide insights on video representations selection based on
network conditions and the importance of the balance between
join time and video bitrate. In good network conditions, one
representation can lead to optimal QoE. For mild network

conditions, the selection process has to account for the videos’
popularity before adding another video representation.

We plan to extend this study by testing our solution in
a cooperative caching scenario where coordination between
multiple edge servers is enabled and orchestrated by a main
controller, mainly in the context of Software Defined Net-
works.
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