155 research outputs found

    Toward an efficiently computable formula for the output statistics of MIMO block-fading channels

    Get PDF
    The information that can be conveyed through a wireless channel, with multiple-antenna equipped transmitter and receiver, crucially depends on the channel behavior as well as on the input structure. In this paper, we present very recent analytical results, concerning the probability density function (pdf) of the output of a single-user, multiple-antenna communication. The analysis is carried out under the assumption of an optimized input structure, and assuming Gaussian noise and block-fading. A further simplification of the output pdf expression presented in our last paper is derived, without the need for resorting to involved integration rules over unitary matrices. With respect to the former result, presented at the main track of this conference, the newly derived formula has the appealing feature of being numerically implementable with open access Matlab codes developed at MIT for the evaluation of zonal polynomial

    Random Access Protocols with Collision Resolution in a Noncoherent Setting

    Full text link
    Wireless systems are increasingly used for Machine-Type Communication (MTC), where the users sporadically send very short messages. In such a setting, the overhead imposed by channel estimation is substantial, thereby demanding noncoherent communication. In this paper we consider a noncoherent setup in which users randomly access the medium to send short messages to a common receiver. We propose a transmission scheme based on Gabor frames, where each user has a dedicated codebook of M possible codewords, while the codebook simultaneously serves as an ID for the user. The scheme is used as a basis for a simple protocol for collision resolution.Comment: 5 pages, 3 figures; EDIT: A version of this work has been submitted for publication in the IEEE Wireless Communication Letters Journa

    Training Optimization for Gauss-Markov Rayleigh Fading Channels

    Full text link
    In this paper, pilot-assisted transmission over Gauss-Markov Rayleigh fading channels is considered. A simple scenario, where a single pilot signal is transmitted every T symbols and T-1 data symbols are transmitted in between the pilots, is studied. First, it is assumed that binary phase-shift keying (BPSK) modulation is employed at the transmitter. With this assumption, the training period, and data and training power allocation are jointly optimized by maximizing an achievable rate expression. Achievable rates and energy-per-bit requirements are computed using the optimal training parameters. Secondly, a capacity lower bound is obtained by considering the error in the estimate as another source of additive Gaussian noise, and the training parameters are optimized by maximizing this lower bound.Comment: To appear in the Proc. of the 2007 IEEE International Conference on Communication

    Information densities for block-fading MIMO channels

    Get PDF

    Space Frequency Codes from Spherical Codes

    Full text link
    A new design method for high rate, fully diverse ('spherical') space frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary numbers of antennas and subcarriers. The construction exploits a differential geometric connection between spherical codes and space time codes. The former are well studied e.g. in the context of optimal sequence design in CDMA systems, while the latter serve as basic building blocks for space frequency codes. In addition a decoding algorithm with moderate complexity is presented. This is achieved by a lattice based construction of spherical codes, which permits lattice decoding algorithms and thus offers a substantial reduction of complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on Information Theor

    An Energy Efficiency Perspective on Training for Fading Channels

    Full text link
    In this paper, the bit energy requirements of training-based transmission over block Rayleigh fading channels are studied. Pilot signals are employed to obtain the minimum mean-square-error (MMSE) estimate of the channel fading coefficients. Energy efficiency is analyzed in the worst case scenario where the channel estimate is assumed to be perfect and the error in the estimate is considered as another source of additive Gaussian noise. It is shown that bit energy requirement grows without bound as the snr goes to zero, and the minimum bit energy is achieved at a nonzero snr value below which one should not operate. The effect of the block length on both the minimum bit energy and the snr value at which the minimum is achieved is investigated. Flash training schemes are analyzed and shown to improve the energy efficiency in the low-snr regime. Energy efficiency analysis is also carried out when peak power constraints are imposed on pilot signals.Comment: To appear in the Proc. of the 2007 IEEE International Symposium on Information Theor

    Output Statistics of MIMO Channels with General Input Distribution

    Get PDF
    The information that can be conveyed through a wireless channel, with multiple-antenna equipped transmitter and receiver, crucially depends on the channel behavior as well as on the input structure. In this paper, we derive analytical results, concerning the probability density function (pdf) of the output of a single-user, multiple-antenna communication. The analysis is carried out under the assumption of an optimized input structure, and assuming Gaussian noise and a Rayleigh block-fading channel. Our analysis therefore provides a quite general and compact expression for the conditional output pdf. We also highlight the relation between such an expression and the results already available in the literature for some specific input structure
    corecore