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Abstract—The information that can be conveyed through a
wireless channel, with multiple-antenna equipped transmitter
and receiver, crucially depends on the channel behavior as
well as on the input structure. In this paper, we present
very recent analytical results, concerning the probability density
function (pdf) of the output of a single-user, multiple-antenna
communication. The analysis is carried out under the assumption
of an optimized input structure, and assuming Gaussian noise
and block-fading. A further simplification of the output pdf
expression presented in our last paper is derived, without the
need for resorting to involved integration rules over unitary
matrices. With respect to the former result, presented at the
main track of this conference, the newly derived formula has
the appealing feature of being numerically implementable with
open access Matlab codes developed at MIT for the evaluation
of zonal polynomials.

I. INTRODUCTION

Several communication and information theoretic perfor-
mance indices depend on the statistical characterization of the
output of a wireless channel. In the MIMO case, this is posing
challenging issues due to the need for exploiting sophisti-
cated tools from multivariate statistics and finite-dimensional
random matrix theory. This work is intended to describe
the ongoing efforts toward an efficiently computable closed
form characterization of the joint density of the entries of a
matrix variate, which represents the output of a MIMO system
affected by AWGN and block-fading. The rationale of the
work stems from the fact that, albeit compact, the expression
we recently provided for the conditional output probability
density function (pdf) of the abovementioned wireless system
was not suitable for computer evaluation. Our current aim is,
then, to provide a formula whose numerical evaluation could
be done via Matlab codes developed for the approximation
of zonal polynomials and functions of matrix arguments like
those from [1]. The result we introduce later in the paper is
the first relevant step toward our main goal.

II. NOTATION AND SYSTEM MODEL

Throughout the work, matrices are denoted by uppercase
boldface letters, vectors by lowercase boldface. The pdf of
a random matrix Z, pZ(Z), is simply denoted by p(Z). (·)†

indicates the conjugate transpose operator, |·| and Tr(·) denote,
respectively, the determinant and the trace of a square matrix,
and || · || stands for the Euclidean norm1. Γp(q), with p≤q, is
the complex multivariate Gamma function [2]

Γp(q) = π
p(p−1)

2

p�

�=1

(q − �)!

and
pF q(a1, . . . , ap; b1 . . . , bq; ·, . . . , ·) ,

with p and q non-negative integers, denotes the generalized
hypergeometric function [3]. The arguments of such a function
can be either scalars or square matrices; there is in general
no limit to the number of arguments, and hypergeometric
functions of multiple matrix arguments are defined also for
set of square matrices of different size. We denote by Im the
m×m identity matrix.

We consider a single-user multiple-antenna communication,
with nR and nT denoting the number of receive and transmit
antennas. For sake of simplicity, let nT ≤ nR, which allows
the modeling of a massive-MIMO channel in the large nR

limit2. Assuming block-fading of length nb, the channel output
can be described by the following linear relationship:

Y =
√

γHX + N. (1)

In (1), Y is the nR × nb output, X is the complex nT × nb

input matrix, and N is the nR × nb matrix of additive com-
plex circularly symmetric Gaussian noise. H is the nR×nT

complex channel matrix, whose entries represent the fading
coefficients between each transmit and each receive antenna.
Finally, γ = SNR/nT represents the normalized per-transmit
antenna Signal-to-Noise Ratio (SNR).

The input matrix X, unless otherwise stated, is assumed
to have a product structure, i.e., X = D

1/2
Φ, where D is a

random, nT -dimensional, diagonal matrix, which is positive
definite w.p. 1. The entries of D represent the amount of

1As applied to a matrix, we mean ||A||2 = Tr(A†A).
2The extension of the results to the case nT > nR is straightforward.
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transmit power allocated to each of the nT transmit antennas,
while Φ is an nT × nb isotropic matrix. As usually done in
the literature [4], [5], we will refer to square isotropic matrices
as Haar and to rectangular isotropic matrices as Stiefel. We
stress that the above structure of the input matrix X allows to
achieve the capacity limit in absence of CSI at both the ends
of the communication link [5, Thm2].

III. STATISTICAL CHARACTERIZATION OF THE CHANNEL
OUTPUT

Theorem 1. Given a channel as in (1), the pdf of its matrix-
variate output, conditionally on the nT -dimensional (diagonal)
input power allocation matrix D and on the nT -dimensional
matrix of the non-zero squared singular values of the channel,
Σ, can be expressed as

p(Y|D,Σ) =
e−||Y||2

�vπnR[nT−nb]+γnRnT

|Σ|−nR

|D|nR

0F 0(ΣD
−1,DΣ

−1,Y†
Y) , (2)

with �v = 2[nT−nb]
+
π[nT−nb]

+2
/Γ[nT−nb]+([nT − nb]+) the

volume of the unitary group of dimension [nT − nb]+3. The
hypergeometric function of three matrix arguments in (2) can
be expanded in zonal polynomials [2] Cκ(·), following [6,
Appendix B] as

0F 0(ΣD
−1,DΣ

−1,Y†
Y) = (3)

(2π)2q−nR−nT

+∞�

k=0

�

#κ=k

Cκ(ΣD
−1)Cκ(DΣ

−1)Cκ(Y†
Y)

k!C2
κ(Iq)

,

with q = max{nT , nR, nb}and #κ the cardinality of κ, which
is a partition of the integer k.

Proof. Due to the Gaussianity of both the channel and the
noise, the conditional output pdf of the MIMO channel (1)
can be expressed as follows:

p(Y|X,H) =
e
−Tr

�
(Y−√γHX)(Y−√γHX)†

�

πnRnb
.

Notice that, expanding the product in the exponent, decom-
posing in its singular values/vectors the channel matrix H =
UΣ

1/2
V

†, and recalling that X = √
γD

1/2
Φ, one obtains,

term by term, e−||Y||2 , which is independent of H and X;

exp
�
−γTr

�
HXX

†
H

†�� = exp
�
−γTr

�
ΣV

†
DV

��
,

which depends only on V, and finally

exp{√γTr
�
YX

†
H

† + HXY
†�} ,

which depends on both V and U. In turn, the conditional pdf
we are interested in can be expressed as

p(Y|D,Σ) =
�

p(Y|Φ,U,V)p(Φ)p(U)p(V)dΦdUdV ,

(4)

3Here, we assume [nT −nb]+ = nT −nb if nT ≥ nb, and [nT −nb]+ =
nb − nT otherwise.

with the integral being over the appropriate matrix spaces,
which can be performed as described below.

The integration over V can be carried out by exploiting [7,
Integral B.I], that over U follows by the splitting formula for
the hypergeometric functions of matrix argument [2, Formula
(92)], while the last one, over Φ, can be performed by the
help of [8, Formula (54)].

IV. DISCUSSION AND FUTURE WORK

The main expression we obtained for the output law is
conditioned to the channel eigenvalues and to the input power
allocation, while we were able to average over the input and
the channel eigenvectors distributions.

Notice that, tough no determinant representation is known
yet for hypergeometric functions of more than two matrix
arguments, still the zonal polynomials the output pdf can
be expanded in can be represented as ratio of determinants.
Moreover, the zonal polynomial of a matrix and this of its
inverse are strongly related (see e.g. [2]), and this yields to
further simplification of (3). The procedure adopted in [9,
Appendix] to perform the average over some of the matrices
appearing in the argument of the zonal polynomials may not be
fully generalized to our case, however the obtained expression
(2) can be already numerically evaluated, as opposite to its
counterpart in [10], by exploiting tools in [1].
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