16,349 research outputs found

    Capacity of a Class of Broadcast Relay Channels

    Full text link
    Consider the broadcast relay channel (BRC) which consists of a source sending information over a two user broadcast channel in presence of two relay nodes that help the transmission to the destinations. Clearly, this network with five nodes involves all the problems encountered in relay and broadcast channels. New inner bounds on the capacity region of this class of channels are derived. These results can be seen as a generalization and hence unification of previous work in this topic. Our bounds are based on the idea of recombination of message bits and various effective coding strategies for relay and broadcast channels. Capacity result is obtained for the semi-degraded BRC-CR, where one relay channel is degraded while the other one is reversely degraded. An inner and upper bound is also presented for the degraded BRC with common relay (BRC-CR), where both the relay and broadcast channel are degraded which is the capacity for the Gaussian case. Application of these results arise in the context of opportunistic cooperation of cellular networks.Comment: 5 pages, to appear in proc. IEEE ISIT, June 201

    Information Networks with in-Block Memory

    Full text link
    A class of channels is introduced for which there is memory inside blocks of a specified length and no memory across the blocks. The multi-user model is called an information network with in-block memory (NiBM). It is shown that block-fading channels, channels with state known causally at the encoder, and relay networks with delays are NiBMs. A cut-set bound is developed for NiBMs that unifies, strengthens, and generalizes existing cut bounds for discrete memoryless networks. The bound gives new finite-letter capacity expressions for several classes of networks including point-to-point channels, and certain multiaccess, broadcast, and relay channels. Cardinality bounds on the random coding alphabets are developed that improve on existing bounds for channels with action-dependent state available causally at the encoder and for relays without delay. Finally, quantize-forward network coding is shown to achieve rates within an additive gap of the new cut-set bound for linear, additive, Gaussian noise channels, symmetric power constraints, and a multicast session.Comment: Paper to appear in the IEEE Transactions on Information Theor

    Cooperative Strategies for Simultaneous and Broadcast Relay Channels

    Full text link
    Consider the \emph{simultaneous relay channel} (SRC) which consists of a set of relay channels where the source wishes to transmit common and private information to each of the destinations. This problem is recognized as being equivalent to that of sending common and private information to several destinations in presence of helper relays where each channel outcome becomes a branch of the \emph{broadcast relay channel} (BRC). Cooperative schemes and capacity region for a set with two memoryless relay channels are investigated. The proposed coding schemes, based on \emph{Decode-and-Forward} (DF) and \emph{Compress-and-Forward} (CF) must be capable of transmitting information simultaneously to all destinations in such set. Depending on the quality of source-to-relay and relay-to-destination channels, inner bounds on the capacity of the general BRC are derived. Three cases of particular interest are considered: cooperation is based on DF strategy for both users --referred to as DF-DF region--, cooperation is based on CF strategy for both users --referred to as CF-CF region--, and cooperation is based on DF strategy for one destination and CF for the other --referred to as DF-CF region--. These results can be seen as a generalization and hence unification of previous works. An outer-bound on the capacity of the general BRC is also derived. Capacity results are obtained for the specific cases of semi-degraded and degraded Gaussian simultaneous relay channels. Rates are evaluated for Gaussian models where the source must guarantee a minimum amount of information to both users while additional information is sent to each of them.Comment: 32 pages, 7 figures, To appear in IEEE Trans. on Information Theor

    Broadcast Channels with Cooperating Decoders

    Full text link
    We consider the problem of communicating over the general discrete memoryless broadcast channel (BC) with partially cooperating receivers. In our setup, receivers are able to exchange messages over noiseless conference links of finite capacities, prior to decoding the messages sent from the transmitter. In this paper we formulate the general problem of broadcast with cooperation. We first find the capacity region for the case where the BC is physically degraded. Then, we give achievability results for the general broadcast channel, for both the two independent messages case and the single common message case.Comment: Final version, to appear in the IEEE Transactions on Information Theory -- contains (very) minor changes based on the last round of review

    Capacity of wireless erasure networks

    Get PDF
    In this paper, a special class of wireless networks, called wireless erasure networks, is considered. In these networks, each node is connected to a set of nodes by possibly correlated erasure channels. The network model incorporates the broadcast nature of the wireless environment by requiring each node to send the same signal on all outgoing channels. However, we assume there is no interference in reception. Such models are therefore appropriate for wireless networks where all information transmission is packetized and where some mechanism for interference avoidance is already built in. This paper looks at multicast problems over these networks. The capacity under the assumption that erasure locations on all the links of the network are provided to the destinations is obtained. It turns out that the capacity region has a nice max-flow min-cut interpretation. The definition of cut-capacity in these networks incorporates the broadcast property of the wireless medium. It is further shown that linear coding at nodes in the network suffices to achieve the capacity region. Finally, the performance of different coding schemes in these networks when no side information is available to the destinations is analyzed

    Deterministic Capacity of MIMO Relay Networks

    Full text link
    The deterministic capacity of a relay network is the capacity of a network when relays are restricted to transmitting \emph{reliable} information, that is, (asymptotically) deterministic function of the source message. In this paper it is shown that the deterministic capacity of a number of MIMO relay networks can be found in the low power regime where \SNR\to0. This is accomplished through deriving single letter upper bounds and finding the limit of these as \SNR\to0. The advantage of this technique is that it overcomes the difficulty of finding optimum distributions for mutual information.Comment: Submitted to IEEE Transactions on Information Theor
    • …
    corecore