225 research outputs found

    Impact of the neighbor’s order on the capacity of millimeter-wave links with Poisson-distributed nodes in line of sight conditions

    Get PDF
    This paper presents a theoretical model for investigating the average capacity of a millimeter wave (mmWave) communication link in line of sight conditions, when a fixed binary phase-shift keying (BPSK) or a quadrature PSK (QPSK) modulation is used and the nodes are distributed according to a homogeneous Poisson point process (PPP). In particular, as compared to the existing PPP approaches, which often consider the sole nearest neighbor as a possible destination, the proposed analysis enables to evaluate the link performance for a neighbor of any order, thus providing a more complete view of the achievable capacity. Besides, the adoption of the BPSK/QPSK modulations helps to obtain a more realistic estimation with respect to the ideal one provided by the usually adopted Shannon bound. Moreover, the derived formulas, which are expressed in analytical form and checked by extensive simulations, include the influence of all the main mmWave propagation phenomena: path-loss attenuation, small- and mid-scale fading. The developed model is specifically exploited to explore the impact of the average cell radius and of the selected frequency band on the sustainability of the mmWave link as the destination becomes farther from the source

    Bit-interleaved coded modulation in the wideband regime

    Full text link
    The wideband regime of bit-interleaved coded modulation (BICM) in Gaussian channels is studied. The Taylor expansion of the coded modulation capacity for generic signal constellations at low signal-to-noise ratio (SNR) is derived and used to determine the corresponding expansion for the BICM capacity. Simple formulas for the minimum energy per bit and the wideband slope are given. BICM is found to be suboptimal in the sense that its minimum energy per bit can be larger than the corresponding value for coded modulation schemes. The minimum energy per bit using standard Gray mapping on M-PAM or M^2-QAM is given by a simple formula and shown to approach -0.34 dB as M increases. Using the low SNR expansion, a general trade-off between power and bandwidth in the wideband regime is used to show how a power loss can be traded off against a bandwidth gain.Comment: Submitted to IEEE Transactions on Information Theor

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    The Effect of Macrodiversity on the Performance of Maximal Ratio Combining in Flat Rayleigh Fading

    Full text link
    The performance of maximal ratio combining (MRC) in Rayleigh channels with co-channel interference (CCI) is well-known for receive arrays which are co-located. Recent work in network MIMO, edge-excited cells and base station collaboration is increasing interest in macrodiversity systems. Hence, in this paper we consider the effect of macrodiversity on MRC performance in Rayleigh fading channels with CCI. We consider the uncoded symbol error rate (SER) as our performance measure of interest and investigate how different macrodiversity power profiles affect SER performance. This is the first analytical work in this area. We derive approximate and exact symbol error rate results for M-QAM/BPSK modulations and use the analysis to provide a simple power metric. Numerical results, verified by simulations, are used in conjunction with the analysis to gain insight into the effects of the link powers on performance.Comment: 10 pages, 5 figures; IEEE Transaction of Communication, 2012 Corrected typo

    Bit-Interleaved Coded Modulation

    Get PDF
    • …
    corecore