54,644 research outputs found

    Capacity of Cellular Wireless Network

    Full text link
    Earlier definitions of capacity for wireless networks, e.g., transport or transmission capacity, for which exact theoretical results are known, are well suited for ad hoc networks but are not directly applicable for cellular wireless networks, where large-scale basestation (BS) coordination is not possible, and retransmissions/ARQ under the SINR model is a universal feature. In this paper, cellular wireless networks, where both BS locations and mobile user (MU) locations are distributed as independent Poisson point processes are considered, and each MU connects to its nearest BS. With ARQ, under the SINR model, the effective downlink rate of packet transmission is the reciprocal of the expected delay (number of retransmissions needed till success), which we use as our network capacity definition after scaling it with the BS density. Exact characterization of this natural capacity metric for cellular wireless networks is derived. The capacity is shown to first increase polynomially with the BS density in the low BS density regime and then scale inverse exponentially with the increasing BS density. Two distinct upper bounds are derived that are relevant for the low and the high BS density regimes. A single power control strategy is shown to achieve the upper bounds in both the regimes. This result is fundamentally different from the well known capacity results for ad hoc networks, such as transport and transmission capacity that scale as the square root of the (high) BS density. Our results show that the strong temporal correlations of SINRs with PPP distributed BS locations is limiting, and the realizable capacity in cellular wireless networks in high-BS density regime is much smaller than previously thought. A byproduct of our analysis shows that the capacity of the ALOHA strategy with retransmissions is zero.Comment: A shorter version to appear in WiOpt 201

    The Future of Wireless Spam

    Get PDF
    Though US cellular networks currently lack the capacity for widespread distribution of unsolicited wireless advertising (wireless spam), these advertisements are already well known in Japan and Europe, where they have proven to be a significant burden on cellular users. This iBrief examines the recently ratified legislation in Japan and Asia that have attempted to stop the glut of wireless advertisements, as a foreshadowing of the problems and questions that will soon have to be addressed in the United States

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Performance evaluation of 5G millimeter-wave cellular access networks using a capacity-based network deployment tool

    Get PDF
    The next fifth generation (5G) of wireless communication networks comes with a set of new features to satisfy the demand of data-intensive applications: millimeter-wave frequencies, massive antenna arrays, beamforming, dense cells, and so forth. In this paper, we investigate the use of beamforming techniques through various architectures and evaluate the performance of 5G wireless access networks, using a capacity-based network deployment tool. This tool is proposed and applied to a realistic area in Ghent, Belgium, to simulate realistic 5G networks that respond to the instantaneous bit rate required by the active users. The results show that, with beamforming, 5G networks require almost 15% more base stations and 4 times less power to provide more capacity to the users and the same coverage performances, in comparison with the 4G reference network. Moreover, they are 3 times more energy efficient than the 4G network and the hybrid beamforming architecture appears to be a suitable architecture for beamforming to be considered when designing a 5G cellular network

    Optimal Non-uniform Deployments in Ultra-Dense Finite-Area Cellular Networks

    Get PDF
    Network densification and heterogenisation through the deployment of small cellular access points (picocells and femtocells) are seen as key mechanisms in handling the exponential increase in cellular data traffic. Modelling such networks by leveraging tools from Stochastic Geometry has proven particularly useful in understanding the fundamental limits imposed on network coverage and capacity by co-channel interference. Most of these works however assume infinite sized and uniformly distributed networks on the Euclidean plane. In contrast, we study finite sized non-uniformly distributed networks, and find the optimal non-uniform distribution of access points which maximises network coverage for a given non-uniform distribution of mobile users, and vice versa.Comment: 4 Pages, 6 Figures, Letter for IEEE Wireless Communication
    corecore