17,352 research outputs found

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Dynamic Packet Scheduling in Wireless Networks

    Full text link
    We consider protocols that serve communication requests arising over time in a wireless network that is subject to interference. Unlike previous approaches, we take the geometry of the network and power control into account, both allowing to increase the network's performance significantly. We introduce a stochastic and an adversarial model to bound the packet injection. Although taken as the primary motivation, this approach is not only suitable for models based on the signal-to-interference-plus-noise ratio (SINR). It also covers virtually all other common interference models, for example the multiple-access channel, the radio-network model, the protocol model, and distance-2 matching. Packet-routing networks allowing each edge or each node to transmit or receive one packet at a time can be modeled as well. Starting from algorithms for the respective scheduling problem with static transmission requests, we build distributed stable protocols. This is more involved than in previous, similar approaches because the algorithms we consider do not necessarily scale linearly when scaling the input instance. We can guarantee a throughput that is as large as the one of the original static algorithm. In particular, for SINR models the competitive ratios of the protocol in comparison to optimal ones in the respective model are between constant and O(log^2 m) for a network of size m.Comment: 23 page

    Identifying Design Requirements for Wireless Routing Link Metrics

    Full text link
    In this paper, we identify and analyze the requirements to design a new routing link metric for wireless multihop networks. Considering these requirements, when a link metric is proposed, then both the design and implementation of the link metric with a routing protocol become easy. Secondly, the underlying network issues can easily be tackled. Thirdly, an appreciable performance of the network is guaranteed. Along with the existing implementation of three link metrics Expected Transmission Count (ETX), Minimum Delay (MD), and Minimum Loss (ML), we implement inverse ETX; invETX with Optimized Link State Routing (OLSR) using NS-2.34. The simulation results show that how the computational burden of a metric degrades the performance of the respective protocol and how a metric has to trade-off between different performance parameters

    Predicting Performance of Channel Assignments in Wireless Mesh Networks through Statistical Interference Estimation

    Get PDF
    Wireless Mesh Network (WMN) deployments are poised to reduce the reliance on wired infrastructure especially with the advent of the multi-radio multi-channel (MRMC) WMN architecture. But the benefits that MRMC WMNs offer viz., augmented network capacity, uninterrupted connectivity and reduced latency, are depreciated by the detrimental effect of prevalent interference. Interference mitigation is thus a prime objective in WMN deployments. It is often accomplished through prudent channel allocation (CA) schemes which minimize the adverse impact of interference and enhance the network performance. However, a multitude of CA schemes have been proposed in research literature and absence of a CA performance prediction metric, which could aid in the selection of an efficient CA scheme for a given WMN, is often felt. In this work, we offer a fresh characterization of the interference endemic in wireless networks. We then propose a reliable CA performance prediction metric, which employs a statistical interference estimation approach. We carry out a rigorous quantitative assessment of the proposed metric by validating its CA performance predictions with experimental results, recorded from extensive simulations run on an ns-3 802.11g environment

    Real-time Power Aware Routing in Wireless Sensor Networks

    Get PDF
    Many mission-critical wireless sensor network applications must resolve the inherent conflict between the tight resource constraints on each sensor node, particularly in terms of energy, with the need to achieve desired quality of service such as end-to-end real-time performance. To address this challenge we propose the Real-time Power-Aware Routing (RPAR) protocol. RPAR achieves required communication delays at minimum energy cost by dynamically adapting the transmission power and routing decisions based on packet deadlines. RPAR integrates a geographic forwarding policy cognizant of deadlines, power, and link quality with new algorithms for on-demand power adaptation and efficient neighborhood discovery. Simulations based on a realistic radio model of MICA2 motes show that RPAR significantly reduces the number of deadline misses and energy consumption when compared to existing real-time and energy-efficient routing protocols and beacon based neighborhood management schemes
    corecore