2,803 research outputs found

    Secret Communication over Broadcast Erasure Channels with State-feedback

    Full text link
    We consider a 1-to-KK communication scenario, where a source transmits private messages to KK receivers through a broadcast erasure channel, and the receivers feed back strictly causally and publicly their channel states after each transmission. We explore the achievable rate region when we require that the message to each receiver remains secret - in the information theoretical sense - from all the other receivers. We characterize the capacity of secure communication in all the cases where the capacity of the 1-to-KK communication scenario without the requirement of security is known. As a special case, we characterize the secret-message capacity of a single receiver point-to-point erasure channel with public state-feedback in the presence of a passive eavesdropper. We find that in all cases where we have an exact characterization, we can achieve the capacity by using linear complexity two-phase schemes: in the first phase we create appropriate secret keys, and in the second phase we use them to encrypt each message. We find that the amount of key we need is smaller than the size of the message, and equal to the amount of encrypted message the potential eavesdroppers jointly collect. Moreover, we prove that a dishonest receiver that provides deceptive feedback cannot diminish the rate experienced by the honest receivers. We also develop a converse proof which reflects the two-phase structure of our achievability scheme. As a side result, our technique leads to a new outer bound proof for the non-secure communication problem

    Content Delivery in Erasure Broadcast Channels with Cache and Feedback

    Full text link
    We study a content delivery problem in a K-user erasure broadcast channel such that a content providing server wishes to deliver requested files to users, each equipped with a cache of a finite memory. Assuming that the transmitter has state feedback and user caches can be filled during off-peak hours reliably by the decentralized content placement, we characterize the achievable rate region as a function of the memory sizes and the erasure probabilities. The proposed delivery scheme, based on the broadcasting scheme by Wang and Gatzianas et al., exploits the receiver side information established during the placement phase. Our results can be extended to centralized content placement as well as multi-antenna broadcast channels with state feedback.Comment: 29 pages, 7 figures. A short version has been submitted to ISIT 201

    Secret message capacity of a line network

    Full text link
    We investigate the problem of information theoretically secure communication in a line network with erasure channels and state feedback. We consider a spectrum of cases for the private randomness that intermediate nodes can generate, ranging from having intermediate nodes generate unlimited private randomness, to having intermediate nodes generate no private randomness, and all cases in between. We characterize the secret message capacity when either only one of the channels is eavesdropped or all of the channels are eavesdropped, and we develop polynomial time algorithms that achieve these capacities. We also give an outer bound for the case where an arbitrary number of channels is eavesdropped. Our work is the first to characterize the secrecy capacity of a network of arbitrary size, with imperfect channels and feedback. As a side result, we derive the secret key and secret message capacity of an one-hop network, when the source has limited randomness

    Cache-Enabled Broadcast Packet Erasure Channels with State Feedback

    Full text link
    We consider a cache-enabled K-user broadcast erasure packet channel in which a server with a library of N files wishes to deliver a requested file to each user who is equipped with a cache of a finite memory M. Assuming that the transmitter has state feedback and user caches can be filled during off-peak hours reliably by decentralized cache placement, we characterize the optimal rate region as a function of the memory size, the erasure probability. The proposed delivery scheme, based on the scheme proposed by Gatzianas et al., exploits the receiver side information established during the placement phase. Our results enable us to quantify the net benefits of decentralized coded caching in the presence of erasure. The role of state feedback is found useful especially when the erasure probability is large and/or the normalized memory size is small.Comment: 8 pages, 4 figures, to be presented at the 53rd Annual Allerton Conference on Communication, Control, and Computing, IL, US
    • …
    corecore