50,422 research outputs found

    Comments on the Gauge Fixed BRST Cohomology and the Quantum Noether Method

    Full text link
    We discuss in detail the relation between the gauge fixed and gauge invariant BRST cohomology. We showed previously that in certain gauges some cohomology classes of the gauge-fixed BRST differential do not correspond to gauge invariant observables. We now show that in addition ``accidental'' conserved currents may appear. These correspond one-to-one to observables that become trivial in this gauge. We explicitly show how the gauge-fixed BRST cohomology appears in the context of the Quantum Noether Method.Comment: 24 pages, example section improved, short version without background material will appear in Physics Letters

    Effects of turbulent mixing on critical behaviour: Renormalization group analysis of the Potts model

    Full text link
    Critical behaviour of a system, subjected to strongly anisotropic turbulent mixing, is studied by means of the field theoretic renormalization group. Specifically, relaxational stochastic dynamics of a non-conserved multicomponent order parameter of the Ashkin-Teller-Potts model, coupled to a random velocity field with prescribed statistics, is considered. The velocity is taken Gaussian, white in time, with correlation function of the form δ(tt)/kd1+ξ\propto \delta(t-t') /|{\bf k}_{\bot}|^{d-1+\xi}, where k{\bf k}_{\bot} is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow") --- the dd-dimensional generalization of the ensemble introduced by Avellaneda and Majda [1990 {\it Commun. Math. Phys.} {\bf 131} 381] within the context of passive scalar advection. This model can describe a rich class of physical situations. It is shown that, depending on the values of parameters that define self-interaction of the order parameter and the relation between the exponent ξ\xi and the space dimension dd, the system exhibits various types of large-scale scaling behaviour, associated with different infrared attractive fixed points of the renormalization-group equations. In addition to known asymptotic regimes (critical dynamics of the Potts model and passively advected field without self-interaction), existence of a new, non-equilibrium and strongly anisotropic, type of critical behaviour (universality class) is established, and the corresponding critical dimensions are calculated to the leading order of the double expansion in ξ\xi and ϵ=6d\epsilon=6-d (one-loop approximation). The scaling appears strongly anisotropic in the sense that the critical dimensions related to the directions parallel and perpendicular to the flow are essentially different.Comment: 21 page, LaTeX source, 7 eps figures. arXiv admin note: substantial text overlap with arXiv:cond-mat/060701

    On Locality, Holography and Unfolding

    Get PDF
    We study the functional class and locality problems in the context of higher-spin theories and Vasiliev's equations. A locality criterion that is sufficient to make higher-spin theories well-defined as field theories on Anti-de-Sitter space is proposed. This criterion identifies admissible pseudo-local field redefinitions which preserve AdS/CFT correlation functions as we check in the 3d example. Implications of this analysis for known higher-spin theories are discussed. We also check that the cubic coupling coefficients previously fixed in 3d at the action level give the correct CFT correlation functions upon computing the corresponding Witten diagrams.Comment: 36 pages, LaTex. References added, typos corrected. Final version to appear in JHE

    Critical behavior at superconductor-insulator phase transitions near one dimension

    Full text link
    I argue that the system of interacting bosons at zero temperature and in random external potential possesses a simple critical point which describes the proliferation of disorder-induced topological defects in the superfluid ground state, and which is located at weak disorder close to and above one dimension. This makes it possible to address the critical behavior at the superfluid-Bose glass transition in dirty boson systems by expanding around the lower critical dimension d=1. Within the formulated renormalization procedure near d=1 the dynamical critical exponent is obtained exactly and the correlation length exponent is calculated as a Laurent series in the parameter \sqrt{\epsilon}, with \epsilon=d-1: z=d, \nu=1/\sqrt{3\epsilon} for the short range, and z=1, \nu=\sqrt{2/3\epsilon}, for the long-range Coulomb interaction between bosons. The identified critical point should be stable against the residual perturbations in the effective action for the superfluid, at least in dimensions 1\leq d \leq 2, for both short-range and Coulomb interactions. For the superfluid-Mott insulator transition in the system in a periodic potential and at a commensurate density of bosons I find \nu=(1/2\sqrt{\epsilon})+ 1/4+O(\sqrt{\epsilon}), which yields a result reasonably close to the known XY critical exponent in d=2+1. The critical behavior of the superfluid density, phonon velocity and the compressibility in the system with the short-range interactions is discussed.Comment: 23 pages, 1 Postscript figure, LaTe

    Ensemble dependence of Critical Casimir Forces in Films with Dirichlet Boundary Conditions

    Full text link
    In a recent study [Phys. Rev. E \textbf{94}, 022103 (2016)] it has been shown that, for a fluid film subject to critical adsorption, the resulting critical Casimir force (CCF) may significantly depend on the thermodynamic ensemble. Here, we extend that study by considering fluid films within the so-called ordinary surface universality class. We focus on mean-field theory, within which the OP profile satisfies Dirichlet boundary conditions and produces a nontrivial CCF in the presence of external bulk fields or, respectively, a nonzero total order parameter within the film. Our analytical results are supported by Monte Carlo simulations of the three-dimensional Ising model. We show that, in the canonical ensemble, i.e., when fixing the so-called total mass within the film, the CCF is typically repulsive instead of attractive as in the grand canonical ensemble. Based on the Landau-Ginzburg free energy, we furthermore obtain analytic expressions for the order parameter profiles and analyze the relation between the total mass in the film and the external bulk field.Comment: 22 pages, 15 figures. Version 2: minor corrections; added Journal referenc

    Influence of Non-Markovian Dynamics in Thermal-Equilibrium Uncertainty-Relations

    Get PDF
    Contrary to the conventional wisdom that deviations from standard thermodynamics originate from the strong coupling to the bath, it is shown that in quantum mechanics, these deviations originate from the uncertainty principle and are supported by the non-Markovian character of the dynamics. Specifically, it is shown that the lower bound of the dispersion of the total energy of the system, imposed by the uncertainty principle, is dominated by the bath power spectrum and therefore, quantum mechanics inhibits the system thermal-equilibrium-state from being described by the canonical Boltzmann's distribution. We show that for a wide class of systems, systems interacting via central forces with pairwise-self-interacting environments, this general observation is in sharp contrast to the classical case, for which the thermal equilibrium distribution, irrespective of the interaction strength, is \emph{exactly} characterized by the canonical Boltzmann distribution and therefore, no dependence on the bath power spectrum is present. We define an \emph{effective coupling} to the environment that depends on all energy scales in the system and reservoir interaction. Sample computations in regimes predicted by this effective coupling are demonstrated. For example, for the case of strong effective coupling, deviations from standard thermodynamics are present and, for the case of weak effective coupling, quantum features such as stationary entanglement are possible at high temperatures.Comment: 9 pages, 3 figure

    Gravity as an emergent phenomenon: a GFT perspective

    Full text link
    While the idea of gravity as an emergent phenomenon is an intriguing one, little is known about concrete implementations that could lead to viable phenomenology, most of the obstructions being related to the intrinsic difficulties of formulating genuinely pregeometric theories. In this paper we present a preliminary discussion of the impact of critical behavior of certain microscopic models for gravity, based on group field theories, on the dynamics of the macroscopic regime. The continuum limit is examined in light of some scaling assumption, and the relevant consequences for low energy effective theories are discussed, the role of universality, the corrections to scaling, the emergence of gravitational theories and the nature of their thermodynamical behavior.Comment: 1+26 page
    corecore