292,971 research outputs found

    Continuous canonical correlation analysis

    Get PDF
    Given a bivariate distribution, the set of canonical correlations and functions is in general finite or countable. By using an inner product between two functions via an extension of the covariance, we find all the canonical correlations and functions for the so-called Cuadras-Aug´e copula and prove the continuous dimensionality of this distribution

    Robust Sparse Canonical Correlation Analysis

    Full text link
    Canonical correlation analysis (CCA) is a multivariate statistical method which describes the associations between two sets of variables. The objective is to find linear combinations of the variables in each data set having maximal correlation. This paper discusses a method for Robust Sparse CCA. Sparse estimation produces canonical vectors with some of their elements estimated as exactly zero. As such, their interpretability is improved. We also robustify the method such that it can cope with outliers in the data. To estimate the canonical vectors, we convert the CCA problem into an alternating regression framework, and use the sparse Least Trimmed Squares estimator. We illustrate the good performance of the Robust Sparse CCA method in several simulation studies and two real data examples

    On Measure Transformed Canonical Correlation Analysis

    Full text link
    In this paper linear canonical correlation analysis (LCCA) is generalized by applying a structured transform to the joint probability distribution of the considered pair of random vectors, i.e., a transformation of the joint probability measure defined on their joint observation space. This framework, called measure transformed canonical correlation analysis (MTCCA), applies LCCA to the data after transformation of the joint probability measure. We show that judicious choice of the transform leads to a modified canonical correlation analysis, which, in contrast to LCCA, is capable of detecting non-linear relationships between the considered pair of random vectors. Unlike kernel canonical correlation analysis, where the transformation is applied to the random vectors, in MTCCA the transformation is applied to their joint probability distribution. This results in performance advantages and reduced implementation complexity. The proposed approach is illustrated for graphical model selection in simulated data having non-linear dependencies, and for measuring long-term associations between companies traded in the NASDAQ and NYSE stock markets

    Permutation Inference for Canonical Correlation Analysis

    Get PDF
    Canonical correlation analysis (CCA) has become a key tool for population neuroimaging, allowing investigation of associations between many imaging and non-imaging measurements. As other variables are often a source of variability not of direct interest, previous work has used CCA on residuals from a model that removes these effects, then proceeded directly to permutation inference. We show that such a simple permutation test leads to inflated error rates. The reason is that residualisation introduces dependencies among the observations that violate the exchangeability assumption. Even in the absence of nuisance variables, however, a simple permutation test for CCA also leads to excess error rates for all canonical correlations other than the first. The reason is that a simple permutation scheme does not ignore the variability already explained by previous canonical variables. Here we propose solutions for both problems: in the case of nuisance variables, we show that transforming the residuals to a lower dimensional basis where exchangeability holds results in a valid permutation test; for more general cases, with or without nuisance variables, we propose estimating the canonical correlations in a stepwise manner, removing at each iteration the variance already explained, while dealing with different number of variables in both sides. We also discuss how to address the multiplicity of tests, proposing an admissible test that is not conservative, and provide a complete algorithm for permutation inference for CCA.Comment: 49 pages, 2 figures, 10 tables, 3 algorithms, 119 reference

    REPRESENTATION-CONSTRAINED CANONICAL CORRELATION-ANALYSIS: A HYBRIDIZATION OF CANONICAL CORRELATION AND PRINCIPAL COMPONENT ANALYSIS

    Get PDF
    The classical canonical correlation analysis is extremely greedy to maximize the squared correlation between two sets of variables. As a result, if one of the variables in the dataset-1 is very highly correlated with another variable in the dataset-2, the canonical correlation will be very high irrespective of the correlation among the rest of the variables in the two datasets. We intend here to propose an alternative measure of association between two sets of variables that will not permit the greed of a select few variables in the datasets to prevail upon the fellow variables so much as to deprive the latter of contributing to their representative variables or canonical variates. Our proposed Representation-Constrained Canonical correlation (RCCCA) Analysis has the Classical Canonical Correlation Analysis (CCCA) at its one end (t=0) and the Classical Principal Component Analysis (CPCA) at the other (as t tends to be very large). In between it gives us a compromise solution. By a proper choice of t, one can avoid hijacking of the representation issue of two datasets by a lone couple of highly correlated variables across those datasets. This advantage of the RCCCA over the CCCA deserves a serious attention by the researchers using statistical tools for data analysis.Representation, constrained, canonical, correlation, principal components, variates, global optimization, particle swarm, ordinal variables, computer program, FORTRAN versus detection.
    corecore