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Abstract: 

The classical canonical correlation analysis is extremely greedy to maximize the squared correlation 

between two sets of variables. As a result, if one of the variables in the dataset-1 is very highly correlated with 

another variable in the dataset-2, the canonical correlation will be very high irrespective of the correlation 

among the rest of the variables in the two datasets. We intend here to propose an alternative measure of 

association between two sets of variables that will not permit the greed of a select few variables in the datasets 

to prevail upon the fellow variables so much as to deprive the latter of contributing to their representative 

variables or canonical variates.  

Our proposed Representation-Constrained Canonical correlation (RCCCA) Analysis has the Classical 

Canonical Correlation Analysis (CCCA) at its one end (λ=0) and the Classical Principal Component Analysis 

(CPCA) at the other (as λ tends to be very large). In between it gives us a compromise solution. By a proper 

choice of λ, one can avoid hijacking of the representation issue of two datasets by a lone couple of highly 

correlated variables across those datasets. This advantage of the RCCCA over the CCCA deserves a serious 

attention by the researchers using statistical tools for data analysis. 
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1. Introduction 

We begin this paper with reference to a dataset that, when subjected to the classical canonical 

correlation analysis, gives us the leading (first or largest) canonical correlation which is misleading. It 

is misleading in the sense that, in this example, the canonical correlation (which is the coefficient of 

correlation between the two canonical variates, each being a linear weighted combination of the 

variables in the associated dataset) is, indeed, not a measure of the true association of the variables in 

the two datasets, but, instead, the datasets have been hijacked by a lone couple of variables across the 

two datasets.   
 

Table 1.1. Simulated Dataset-1 for Canonical correlation 

 

X1 or Dataset-1 X2 or Dataset-2 Sl   

No. X11 X12 X13 X14 X21 X22 X23 X24 X25 

1 0.7 2.6 0.1 1.7 0.2 0.8 1.6 0.5 1.6 

2 1.5 1.7 1.2 1.5 1.6 2.4 2.3 1.4 3.2 

3 2.3 0.3 2.7 1.2 2.5 2.9 0.6 1.3 4.8 

4 0.6 2.0 0.9 2.8 2.8 2.5 1.1 1.8 1.4 

5 0.1 0.9 1.6 1.8 2.2 2.7 2.1 0.2 0.4 

6 1.9 1.1 1.7 2.6 1.5 2.2 2.2 2.0 4.0 

7 1.0 2.7 2.4 2.7 1.0 0.2 2.0 0.4 2.2 

8 1.8 2.9 1.4 0.9 1.7 1.0 1.8 1.2 3.8 

9 2.8 0.1 1.8 0.4 2.3 0.6 1.7 0.6 5.8 

10 1.4 0.6 2.8 1.4 2.6 1.8 0.8 1.7 3.0 

11 1.2 2.5 2.9 0.8 2.1 0.7 1.4 2.3 2.6 

12 1.1 1.3 0.2 2.5 0.7 1.5 1.0 2.2 2.4 

13 3.0 1.9 1.1 1.6 0.1 0.1 2.7 3.0 6.2 
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X1 or Dataset-1 X2 or Dataset-2 Sl   

No. X11 X12 X13 X14 X21 X22 X23 X24 X25 

14 2.0 0.8 0.6 1.3 1.9 0.5 0.4 0.8 4.2 

15 1.6 2.2 2.6 1.9 1.4 1.3 1.3 2.5 3.4 

16 2.9 0.7 1.9 2.9 2.4 1.2 2.5 2.1 6.0 

17 1.3 1.4 2.0 0.2 1.8 2.8 0.3 2.6 2.8 

18 0.8 0.2 2.3 2.0 2.9 1.4 3.0 0.7 1.8 

19 1.7 0.5 1.3 0.1 2.0 0.9 2.9 1.5 3.6 

20 2.1 2.4 0.7 0.5 0.9 2.3 0.7 0.3 4.4 

21 2.5 1.0 3.0 2.2 1.2 2.6 2.6 1.0 5.2 

22 2.2 2.8 2.5 0.7 3.0 3.0 0.2 1.9 4.6 

23 0.5 0.4 0.8 1.0 0.8 0.4 0.1 1.1 1.2 

24 2.7 2.1 1.5 2.3 1.1 1.1 0.9 2.7 5.6 

25 2.4 1.8 0.5 0.3 2.7 1.6 2.8 0.1 5.0 

26 0.2 1.6 0.3 1.1 0.6 0.3 2.4 2.8 0.6 

27 0.9 2.3 0.4 0.6 1.3 1.7 1.5 2.4 2.0 

28 2.6 3.0 2.2 3.0 0.5 1.9 1.9 1.6 5.4 

29 0.4 1.2 1.0 2.4 0.4 2.0 0.5 2.9 1.0 

30 0.3 1.5 2.1 2.1 0.3 2.1 1.2 0.9 0.8 

 

In Table 1.1 the dataset X is presented which is a pooled set of two datasets, X1 and X2, such 

that X=[X1|X2].  The first dataset has m1 (=4) variables and the second dataset has m2 (=5) variables, 

each in n (=30) observations. These seemingly normal datasets, when subjected to the classical 

canonical correlation analysis, yield canonical correlation between the composite variables, 
1z  and 

2z  

(the canonical variates), 
1 2( , ) 1.0 :r z z =  

4

1 1 11
; ;

j j ijj
z w x x X

=
= ∈∑  

5

2 2 2 21
; .

j j jj
z w x x X

=
= ∈∑  The weight 

vectors are: w1=(1, 0, 0, 0, 0) and w2=(0, 0, 0, 0, 1). This anomalous situation has arisen due to the 

fact that 25x is perfectly linearly dependent on 11x and the canonical correlation, 1 2( , ),r z z  is in fact 

11 25( , ).r x x Other variables have no contribution to 
1z  or 

2 .z  It follows, therefore, that 
1z  and 

2z  do not 

represent other variables in X1 and X2. Nor is the canonical correlation, 
1 2( , )r z z , a correlation 

between the two sets, X1 and X2, in any relevant or significant sense. Thus, the leading canonical 

correlation may deceive us if we are only a little less careful to look into the correlation matrix 

encompassing all variables.  

Such examples may be multiplied ad infinitum. If one is cautious, the anomalous cases can be 

detected. However, such cases, if not detected, make scientific analysis and interpretation of empirical 

results rather hazardous. One may easily be misled to a conclusion that such two datasets are highly 

correlated while the truth may be quite far from it.  
 

2. Objectives of the Present Work 

We intend here to propose an alternative measure of association between two sets of variables 

that will not permit the greed of a select few variables in the datasets to prevail upon the fellow 

variables so much as to deprive the latter of contributing their say and share to the representative 

variables ( 1ς  and 2ς ), which they make by their participation in the linear combination.  We may not 

call 1ς = 1

1 11

m

j jj
xω

=∑  and 2ς = 2

2 21

m

j jj
xω

=∑  the canonical variables (defined before as 

4

1 11
;j jj

z w x
=

=∑ 5

2 21 j jj
z w x

=
=∑

 
obtained from the classical canonical correlation analysis).   

In the classical canonical correlation analysis the objective is to maximize 
1 22

1 2 1 1 1 2 2 21 1
( , ) : ;

m m

j j j jj j
r z z z w x z w x

= =
= =∑ ∑ irrespective of 

1 1 1 1( , ) :j jr z x x X∈  and 
2 2 2 2( , ) : ,j jr z x x X∈ and, 

therefore, 2

1 2( , )r z z is subject to an unconstrained maximization. However, in the method that we are 

proposing here, the objective will be to maximize 2

1 2( , )r ς ς : 1ς  =
1

1 11

m

j jj
xω

=∑  and 2ς  = 2

2 21

m

j jj
xω

=∑ with 

certain constraints in terms of  
1 1 1 1( , ) :j jr x x Xς ∈  and 

2 2 2 2( , ) : .j jr x x Xς ∈ These constraints would 

ensure the representativeness of  
1ς to X1 and that of 

2ς to X2. Hence, the proposed method may be 

called the Representation-Constrained Canonical Correlation Analysis. 
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3. The Nature and Implications of the Proposed Constraints 

There are a number of ways in which the canonical variates can be constrained insofar as their 

association and concordance with their fellow variables in their respective native datasets are 

concerned. In other words, their representativeness to their native datasets can be defined variously.  

We discuss here some of the alternatives in terms of correlation as a measure of representativeness. 

 

(i) Mean absolute correlation principle: A (constrained) canonical variate 

1
;

am

a aj aj aj aj
x x Xς ω

=
= ∈∑ is a better representative of 

aX if the mean absolute correlation, 

1
| ( , ) |,

am

a ajj
r xς

=∑ is larger. This approach is equalitarian in effect. 

(ii) Mean squared correlation principle: A (constrained) canonical variate 

1
;

am

a aj aj aj aj
x x Xς ω

=
= ∈∑ is a better representative of 

aX if the mean squared correlation, 

2

1
( , ),

am

a ajj
r xς

=∑ is larger. This approach is elitist in effect, favouring dominant members. 

(iii) Minimal absolute correlation principle: A (constrained) canonical variate 

1
;

am

a aj aj aj aj
x x Xς ω

=
= ∈∑ is a better representative of 

aX if the minimal absolute correlation, 

min[| ( , ) |],
j a aj

r xς is larger. A larger  min[| ( , ) |]
j a aj

r xς  implies that the minimal squared correlation,  

2
min[ ( , )],

j a ajr xς is larger. This approach is in favour of the weak.  

 

These three approaches lead to three alternative objective functions:  

(i). Maximize 1 2 1 22

1 2 1 1 1 2 2 2 1 1 1 2 2 21 1 1 1
( , ) [ | ( , ) | / | ( , ) | / ] : ; .

m m m m
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(iii). Maximize 1 22

1 2 1 1 2 2 1 1 1 2 2 21 1
( , ) min[| ( , ) |] min[| ( , ) |] : ; .

j j

m m

j j j j j jj j
r r x r x x xς ς λ ς ς ς ω ς ω

= =
 + + = =  ∑ ∑  

In these objective functions, the value of λ may be chosen subjectively. If 0,λ = the objective 

function would degenerate to the classical canonical correlation analysis, but λ has no upper bound. 

Also note that if the first term is 
1 2| ( , ) |r ς ς  rather than 2

1 2( , )r ς ς  and 0,λ ≠ its implied weight vis-à-vis 

the second term increases since 
1 2| ( , ) |r ς ς > 2

1 2( , )r ς ς  
for | | 1.r <    

 

4. The Method of Optimization 

The classical canonical correlation analysis [Hotelling, (1936)] sets up the objective function to 

maximize 1 22

1 2 1 1 1 2 2 21 1
( , ) : ;

m m

j j j jj j
r x xς ς ς ω ς ω

= =
= =∑ ∑ and using the calculus methods of maximization 

resolves the problem to finding out the largest eigenvalue and the associated eigenvector of the 

matrix, 1 1

1 1 1 2 2 2 2 1[ ] [ ] .X X X X X X X X
− −′ ′ ′ ′  The largest eighen-value turns out to be the leading 

1 22

1 2 1 1 1 2 2 21 1
( , ) : ;

m m

j j j jj j
r z z z w x z w x

= =
= =∑ ∑ , and the standardized eigenvector is used to obtain 

1w  and 

2 .w  However, a general calculus-based method cannot be applied to maximize the (arbitrary) 

objective function set up for the constrained canonical correlation analysis. At any rate, the first and 

the third objective functions are not amenable to maximization by the calculus-based methods.  

We choose, therefore, to use a relatively new and more versatile method of (global) 

optimization, namely, the Particle Swarm Optimization (PSO) proposed by Eberhart and Kennedy 

(1995). A lucid description of its foundations is available in Fleischer (2005). The PSO is a 

biologically inspired population-based stochastic search method modeled on the ornithological 

observations, simulating the behavior of members of the flocks of birds in searching food and 

communicating among themselves. It is in conformity with the principles of decentralized decision 

making [Hayek, (1948); (1952)] leading to self-organization and macroscopic order. The effectiveness 

of PSO has been very encouraging in solving extremely difficult and varied types of nonlinear 

optimization problems [Mishra, (2006)]. We have used a particular variant of the PSO called the 

Repulsive Particle Swarm Optimization [Urfalioglu, (2004)]. 
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5. Findings and Discussion 

We have subjected the data in Table 1.1 to the representation-constrained canonical correlation 

analysis with the three alternative objective functions elaborated in section-III. The first term, 

measuring the degree of association between the two datasets, X1 and X2, is in the squared form, that 

is 2

1 2( , )r ς ς , although we have reported its positive square root (=
1 2| ( , ) |r ς ς ) in Table 1.2. The three 

objective functions have been optimized for the different values of ,λ varying from zero to 50 with an 

increment of 0.5. For the first objective function, the values of 
1 2

| ( , ) |,r ς ς  mean absolute 
1 1

( , )r xς  and 

mean absolute 
2 2

( , )r xς  at different values of λ  have been plotted in Figure 1.1. Similarly, for the 

second objective function, the values of 
1 2

| ( , ) |,r ς ς  mean squared 
1 1

( , )r xς  and mean squared 
2 2

( , )r xς  at 

different values of λ  have been plotted in Figure1.2., Figure 1.3 presents 
1 2

| ( , ) |r ς ς , minimum 

absolute
1 1

( , )r xς  and minimum absolute
2 2

( , )r xς relating to the 3
rd

  objective maximized at  different 

values of .λ  
 

Table 1.2. Relationship between Constrained Canonical Correlation and Representation Correlation  

between Canonical Variates and their Constituent Variables for Different Values of λ 
Sl 

No 
Mean Absolute Mean Squared Minimum Absolute 

 
λ 

Canonical 

 
1 1( , )r xς  

2 2( , )r xς  

Canonical 

 
1 1( , )r xς  

2 2( , )r xς  

Canonical 

 
1 1( , )r xς  

2 2( , )r xς  

1 0.0 1.0000 0.3342 0.2814 1.0000 0.2668 0.2121 1.0000 0.0234 0.0246 

2 0.5 0.9831 0.3942 0.3254 0.9990 0.2717 0.2152 0.9755 0.1615 0.1361 

3 1.0 0.9440 0.4434 0.3785 0.9961 0.2763 0.2183 0.8223 0.3921 0.2671 

4 1.5 0.8942 0.4772 0.4188 0.9916 0.2805 0.2214 0.5072 0.5302 0.4618 

5 2.0 0.8432 0.4992 0.4479 0.9855 0.2843 0.2244 0.4662 0.5319 0.4853 

6 2.5 0.7975 0.5128 0.4679 0.9780 0.2878 0.2275 0.4556 0.5337 0.4889 

7 3.0 0.7597 0.5210 0.4813 0.9691 0.2909 0.2306 0.4473 0.5338 0.4917 

8 3.5 0.7298 0.5259 0.4902 0.9590 0.2938 0.2338 0.4296 0.5337 0.4968 

9 4.0 0.7060 0.5290 0.4962 0.9477 0.2964 0.2369 0.4349 0.5334 0.4954 

10 4.5 0.6870 0.5310 0.5005 0.9352 0.2987 0.2401 0.4230 0.5335 0.4978 

11 5.0 0.6715 0.5323 0.5036 0.9217 0.3008 0.2433 0.4342 0.5337 0.4955 

12 5.5 0.6590 0.5333 0.5058 0.9073 0.3027 0.2464 0.4359 0.5338 0.4950 

13 6.0 0.6483 0.5339 0.5076 0.8921 0.3044 0.2495 0.4404 0.5338 0.4940 

14 6.5 0.6394 0.5345 0.5089 0.8762 0.3059 0.2525 0.3743 0.5389 0.4963 

15 7.0 0.6318 0.5348 0.5100 0.8599 0.3072 0.2554 0.4170 0.5337 0.4994 

16 7.5 0.6251 0.5351 0.5108 0.8434 0.3083 0.2581 0.4175 0.5338 0.4992 

17 8.0 0.6193 0.5354 0.5115 0.8270 0.3094 0.2607 0.4278 0.5338 0.4970 

18 8.5 0.6142 0.5356 0.5121 0.8106 0.3102 0.2630 0.4167 0.5335 0.4990 

19 9.0 0.6098 0.5357 0.5126 0.7945 0.3110 0.2652 0.4293 0.5337 0.4967 

20 9.5 0.6056 0.5358 0.5130 0.7789 0.3117 0.2672 0.4206 0.5339 0.4986 

21 10.0 0.6019 0.5360 0.5133 0.7641 0.3122 0.2690 0.3746 0.5389 0.4962 

22 10.5 0.5988 0.5360 0.5136 0.7495 0.3127 0.2706 0.2904 0.5023 0.4748 

23 11.0 0.5958 0.5361 0.5139 0.7359 0.3132 0.2721 0.4167 0.5338 0.4990 

24 11.5 0.5931 0.5362 0.5141 0.7227 0.3136 0.2734 0.4201 0.4789 0.4281 

25 12.0 0.5906 0.5362 0.5143 0.7103 0.3139 0.2746 0.4206 0.5338 0.4987 

26 12.5 0.5884 0.5363 0.5144 0.6985 0.3142 0.2756 0.5150 0.4781 0.3664 

27 13.0 0.5861 0.5363 0.5146 0.6872 0.3145 0.2766 0.4167 0.5337 0.4993 

28 13.5 0.5842 0.5364 0.5147 0.6764 0.3148 0.2774 0.3745 0.5389 0.4964 

29 14.0 0.5826 0.5364 0.5148 0.6665 0.3150 0.2782 0.3742 0.5390 0.4963 

30 14.5 0.5807 0.5364 0.5150 0.6570 0.3152 0.2789 0.4022 0.4648 0.4532 

31 15.0 0.5791 0.5365 0.5151 0.6478 0.3154 0.2795 0.4170 0.5338 0.4991 

32 15.5 0.5778 0.5365 0.5151 0.6390 0.3155 0.2801 0.4179 0.5003 0.4860 

33 16.0 0.5765 0.5365 0.5152 0.6310 0.3157 0.2806 0.2791 0.5387 0.4990 

34 16.5 0.5751 0.5365 0.5153 0.6231 0.3158 0.2810 0.3992 0.4764 0.4347 

35 17.0 0.5739 0.5365 0.5154 0.6158 0.3159 0.2815 0.3742 0.5388 0.4964 

36 17.5 0.5728 0.5366 0.5154 0.6088 0.3160 0.2819 0.0285 0.4457 0.4501 

37 18.0 0.5715 0.5366 0.5155 0.6021 0.3161 0.2822 0.2794 0.5389 0.4992 

38 18.5 0.5706 0.5366 0.5155 0.5960 0.3162 0.2825 0.3811 0.4744 0.4599 

39 19.0 0.5697 0.5366 0.5156 0.5898 0.3163 0.2828 0.3741 0.5389 0.4963 

40 19.5 0.5688 0.5366 0.5156 0.5840 0.3164 0.2831 0.3743 0.5389 0.4962 

41 20.0 0.5680 0.5366 0.5157 0.5783 0.3165 0.2834 0.3345 0.4838 0.3983 

42 20.5 0.5671 0.5366 0.5157 0.5732 0.3166 0.2836 0.2795 0.5389 0.4994 

43 21.0 0.5663 0.5366 0.5157 0.5682 0.3166 0.2838 0.4194 0.4718 0.4439 

44 21.5 0.5655 0.5366 0.5158 0.5632 0.3167 0.2840 0.3746 0.5389 0.4963 

45 22.0 0.5650 0.5367 0.5158 0.5587 0.3167 0.2842 0.5496 0.5103 0.3823 

46 22.5 0.5643 0.5367 0.5158 0.5542 0.3168 0.2843 0.2539 0.5138 0.4743 

47 23.0 0.5635 0.5367 0.5158 0.5499 0.3168 0.2845 0.2795 0.5390 0.4993 

48 23.5 0.5630 0.5367 0.5159 0.5459 0.3169 0.2846 0.2865 0.4643 0.4394 
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49 24.0 0.5623 0.5367 0.5159 0.5419 0.3169 0.2848 0.3688 0.5389 0.4944 

50 24.5 0.5618 0.5367 0.5159 0.5383 0.3170 0.2849 0.2490 0.5347 0.4720 

51 25.0 0.5612 0.5367 0.5159 0.5347 0.3170 0.2850 0.2792 0.5387 0.4994 

52 25.5 0.5607 0.5367 0.5159 0.5312 0.3170 0.2851 0.4305 0.4684 0.3653 

53 26.0 0.5603 0.5367 0.5160 0.5280 0.3171 0.2852 0.2793 0.5387 0.4993 

54 26.5 0.5597 0.5367 0.5160 0.5249 0.3171 0.2853 0.4418 0.5176 0.4731 

55 27.0 0.5592 0.5367 0.5160 0.5219 0.3171 0.2854 0.3741 0.5388 0.4963 

56 27.5 0.5589 0.5367 0.5160 0.5186 0.3171 0.2855 0.5795 0.4661 0.4031 

57 28.0 0.5584 0.5367 0.5160 0.5160 0.3172 0.2856 0.2335 0.5213 0.4604 

58 28.5 0.5581 0.5367 0.5160 0.5131 0.3172 0.2857 0.2335 0.5213 0.4604 

59 29.0 0.5575 0.5367 0.5161 0.5103 0.3172 0.2858 0.2790 0.5388 0.4993 

60 29.5 0.5572 0.5367 0.5161 0.5080 0.3172 0.2858 0.1922 0.5023 0.4015 

61 30.0 0.5568 0.5367 0.5161 0.5054 0.3173 0.2859 0.4223 0.5119 0.4564 

62 30.5 0.5564 0.5367 0.5161 0.5030 0.3173 0.2859 0.3929 0.5016 0.4801 

63 31.0 0.5561 0.5367 0.5161 0.5008 0.3173 0.2860 0.2795 0.5390 0.4993 

64 31.5 0.5558 0.5367 0.5161 0.4987 0.3173 0.2861 0.3260 0.5081 0.4567 

65 32.0 0.5555 0.5367 0.5161 0.4964 0.3173 0.2861 0.2140 0.5156 0.4897 

66 32.5 0.5549 0.5367 0.5161 0.4942 0.3173 0.2862 0.2793 0.5389 0.4992 

67 33.0 0.5547 0.5367 0.5161 0.4921 0.3174 0.2862 0.4277 0.4566 0.4137 

68 33.5 0.5545 0.5367 0.5161 0.4902 0.3174 0.2863 0.2794 0.5389 0.4993 

69 34.0 0.5542 0.5367 0.5161 0.4883 0.3174 0.2863 0.4708 0.5056 0.3723 

70 34.5 0.5539 0.5367 0.5162 0.4865 0.3174 0.2863 0.2787 0.5388 0.4988 

71 35.0 0.5539 0.5367 0.5162 0.4846 0.3174 0.2864 0.3639 0.5312 0.4787 

72 35.5 0.5534 0.5367 0.5162 0.4830 0.3174 0.2864 0.2793 0.5389 0.4992 

73 36.0 0.5532 0.5367 0.5162 0.4814 0.3174 0.2864 0.4560 0.5133 0.4533 

74 36.5 0.5528 0.5367 0.5162 0.4796 0.3174 0.2865 0.3375 0.5282 0.4788 

75 37.0 0.5524 0.5368 0.5162 0.4780 0.3174 0.2865 0.2504 0.5345 0.4600 

76 37.5 0.5524 0.5368 0.5162 0.4765 0.3175 0.2865 0.2784 0.5380 0.4988 

77 38.0 0.5521 0.5368 0.5162 0.4749 0.3175 0.2866 0.0886 0.5222 0.4078 

78 38.5 0.5520 0.5368 0.5162 0.4733 0.3175 0.2866 0.2791 0.5372 0.4631 

79 39.0 0.4469 0.5394 0.5163 0.4721 0.3175 0.2866 0.2795 0.5389 0.4992 

80 39.5 0.4468 0.5394 0.5163 0.4707 0.3175 0.2866 0.0385 0.5148 0.4071 

81 40.0 0.4467 0.5394 0.5163 0.4693 0.3175 0.2867 0.2028 0.5160 0.4721 

82 40.5 0.4463 0.5394 0.5163 0.4681 0.3175 0.2867 0.0080 0.5182 0.4812 

83 41.0 0.4463 0.5394 0.5163 0.4666 0.3175 0.2867 0.3389 0.4771 0.4282 

84 41.5 0.4461 0.5394 0.5163 0.4653 0.3175 0.2867 0.2795 0.5389 0.4994 

85 42.0 0.4460 0.5394 0.5163 0.4644 0.3175 0.2868 0.3389 0.4771 0.4282 

86 42.5 0.4458 0.5394 0.5163 0.4631 0.3175 0.2868 0.0338 0.5248 0.4897 

87 43.0 0.4456 0.5394 0.5163 0.4617 0.3175 0.2868 0.2793 0.5389 0.4993 

88 43.5 0.4454 0.5394 0.5163 0.4606 0.3175 0.2868 0.1597 0.4139 0.3977 

89 44.0 0.4453 0.5394 0.5163 0.4593 0.3176 0.2868 0.0338 0.5248 0.4897 

90 44.5 0.4452 0.5394 0.5163 0.4586 0.3176 0.2869 0.2794 0.5389 0.4994 

91 45.0 0.4451 0.5394 0.5163 0.4576 0.3176 0.2869 0.1880 0.5229 0.4274 

92 45.5 0.4450 0.5394 0.5163 0.4564 0.3176 0.2869 0.2733 0.5300 0.4848 

93 46.0 0.4448 0.5394 0.5163 0.4555 0.3176 0.2869 0.2786 0.5389 0.4991 

94 46.5 0.4447 0.5394 0.5163 0.4547 0.3176 0.2869 0.2822 0.5354 0.4665 

95 47.0 0.4445 0.5394 0.5163 0.4535 0.3176 0.2869 0.2898 0.5252 0.4905 

96 47.5 0.4444 0.5394 0.5163 0.4527 0.3176 0.2869 0.2796 0.5389 0.4993 

97 48.0 0.4444 0.5394 0.5163 0.4510 0.3176 0.2870 0.3372 0.4676 0.4344 

98 48.5 0.4442 0.5394 0.5163 0.4509 0.3176 0.2870 0.2768 0.5389 0.4985 

99 49.0 0.4440 0.5394 0.5163 0.4500 0.3176 0.2870 0.2792 0.5388 0.4993 

100 49.5 0.4439 0.5394 0.5163 0.4491 0.3176 0.2870 0.2790 0.5389 0.4993 

101 50.0 0.4438 0.5394 0.5163 0.4480 0.3176 0.2870 0.2784 0.5390 0.4989 

 

From Figure 1.1 and Figure 1.2 it is clear that for increasing values of ,λ  the value of 

1 2
| ( , ) |r ς ς decreases monotonically, while the values of mean absolute (or squared) 

1 1
( , )r xς  and mean 

absolute (or squared) 
2 2

( , )r xς  increase monotonically. All of them exhibit asymptotic tendencies. 

However, for the third objective function the monotonicity of all the correlation functions is lost  

(shown in Figure 1.3). Of course, the trends in minimum absolute 
1 1

( , )r xς  and minimum absolute 

2 2
( , )r xς  are clearly observable. These observations may be useful to the choice of .λ For the case that 

we are presently dealing with, the value of λ need not exceed 10 to assure a fairly satisfactory 

representation of the two datasets by the corresponding canonical variates. 

In particular, optimization of the second objective function has shown that the values of mean 

squared 
1 1

( , )r xς  and mean squared 
2 2

( , )r xς  exhibit asymptotic tendencies. For λ=50, the mean squared 

1 1
( , )r xς   is 0.3176 while the mean squared 2 2

( , )r xς  is 0.2870.  
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Now, let us digress for a while to compute the first principal components of X1 and X2 (from 

the data given in Table 1.1). We find that for X1 the sum of squared correlation (component loadings) 

of the component score (
1
ξ ) with its constituent variables is 0.317757. In other words, the first 

eigenvalue of the inter-correlation matrix R1 obtained from X1 is 1.271029, which divided by 4 (order 

of R1) gives 0.317757. This is, in a way, a measure of representation of X1 by its first principal 

component. Similarly, for X2 the sum of squared correlation of the component score ( 2
ξ ) with its 

constituent variables is 0.287521.  

We resume our discussion for comparing these results (obtained from the Principal Component 

Analysis) with the results of our proposed representation-constrained canonical correlation analysis. 

We observe that the asymptotic tendencies of mean squared 1 1
( , )r xς  and mean squared 2 2

( , )r xς  clearly 

point to the explanatory powers of the first principal components of X1 and X2 respectively. 

However, if we compute the coefficient of correlation between the two component scores 

( 1 2
( , )r ξ ξ =0.390767) and compare it with the constrained canonical correlation ( 1 2

( , )r ς ς =0.4480 for 

λ=50) we find that the latter is larger.  Then, is the constrained canonical correlation analysis a hybrid 
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of the classical canonical correlation and principal component analyses which has better properties of 

representation of data than its parents? 

We conduct another experiment with the dataset presented in Table 2.1. We find that 
1
ξ  for X1 

has the representation power 0.333261 (eigenvalue=1.333042) while 
2
ξ for X2 has the representation 

power 0.382825 (eigenvalue=1.914123). The 
1 2

( , )r ξ ξ is 0.466513. On the other hand, results of the 

constrained canonical correlation (for λ=49) are:  mean squared 
1 1

( , )r xς = 0.33317; mean squared 

2 2
( , )r xς =0.38270 and the representation-constrained canonical correlation, 

1 2
( , )r ς ς = 0.48761. These 

findings are corroborative to our earlier results with regard to the dataset in Table 1.1. 

 
Table 2.1. Simulated Dataset-2 for Canonical correlation 

 
X1 or Dataset-1 X2 or Dataset-2 X1 or Dataset-1 X2 or Dataset-2 Sl 

No. X11 X12 X13 X14 X21 X22 X23 X24 X25 

Sl 

No. X11 X12 X13 X14 X21 X22 X23 X24 X25 

1 2.7 1.9 2.4 1.2 2.6 2.3 1.5 0.1 6.6 16 1.4 1.4 0.2 0.4 1.1 2.2 2.2 2.6 2.4 

2 1.7 0.1 0.8 1.8 0.4 0.2 2.3 0.2 0.1 17 1.5 0.4 2.2 1.9 1.9 0.6 2.1 1.9 5.5 

3 0.2 2.8 2.6 0.9 1.3 2.0 2.0 0.3 7.3 18 0.6 1.3 2.5 2.8 2.8 2.5 2.7 2.2 4.9 

4 0.4 0.3 1.1 0.2 1.5 1.3 1.1 1.8 3.3 19 2.5 1.1 0.1 1.1 2.5 1.0 1.0 2.9 3.8 

5 0.9 1.8 1.6 1.4 0.8 1.2 2.4 2.4 5.7 20 1.0 2.3 1.8 1.5 2.9 1.8 1.6 2.0 5.8 

6 0.5 0.9 2.7 0.7 1.4 1.6 1.2 3.0 6.2 21 0.8 1.7 1.0 1.6 1.6 2.4 0.6 1.4 4.5 

7 2.0 1.0 2.9 1.7 0.3 0.1 0.4 1.1 5.4 22 0.3 1.2 2.1 0.3 2.0 1.9 0.7 0.9 4.5 

8 0.1 1.6 0.5 2.7 0.7 2.1 1.3 1.7 3.1 23 1.3 0.7 1.3 2.4 2.2 0.7 0.8 1.0 3.4 

9 1.2 0.6 2.8 1.0 0.1 0.9 0.1 0.8 3.7 24 2.6 1.5 2.3 0.6 1.7 2.9 2.9 2.5 7.3 

10 2.9 2.1 0.4 0.8 0.5 0.3 1.7 0.4 4.7 25 3.0 2.6 1.2 3.0 2.7 2.6 2.8 1.5 7.2 

11 0.7 0.5 0.6 1.3 2.1 0.5 0.3 0.7 0.7 26 1.1 2.2 0.7 2.5 2.4 0.8 2.6 1.2 3.8 

12 2.8 2.5 1.5 2.9 2.3 2.8 3.0 1.6 6.5 27 1.8 2.0 1.9 2.2 1.8 1.7 1.8 0.6 6.1 

13 2.2 0.2 1.7 2.3 3.0 1.1 0.5 2.7 3.9 28 1.9 2.7 3.0 2.0 1.0 1.4 1.4 0.5 9.5 

14 2.1 0.8 0.9 2.6 0.9 2.7 2.5 2.1 3.6 29 1.6 2.4 0.3 0.5 0.2 0.4 0.2 2.3 6.5 

15 2.3 3.0 1.4 0.1 0.6 3.0 0.9 2.8 8.4 30 2.4 2.9 2.0 2.1 1.2 1.5 1.9 1.3 7.6 

 

 
Table 2.2. Relationship between Constrained Canonical Correlation and Representation Correlation between 

Canonical Variates and their Constituent Variables for Different Values of λ (Dataset in Table-2.1) 

 

Mean Squared Mean Squared Sl 

No. 
λ 

Canonical 

 1 1( , )r xς  
2 2( , )r xς  

Sl 

No. 
λ 

Canonical 

 1 1( , )r xς  
2 2( , )r xς  

1 0.0 0.95772 0.28514 0.23519 26 25.0 0.50983 0.33290 0.38230 

2 1.0 0.94904 0.29212 0.26011 27 26.0 0.50804 0.33293 0.38234 

3 2.0 0.91881 0.29987 0.28983 28 27.0 0.50638 0.33296 0.38238 

4 3.0 0.86701 0.30782 0.31901 29 28.0 0.50475 0.33298 0.38241 

5 4.0 0.80425 0.31506 0.34197 30 29.0 0.50340 0.33300 0.38244 

6 5.0 0.74448 0.32066 0.35709 31 30.0 0.50203 0.33302 0.38247 

7 6.0 0.69541 0.32452 0.36618 32 31.0 0.50086 0.33304 0.38249 

8 7.0 0.65777 0.32703 0.37155 33 32.0 0.49966 0.33305 0.38252 

9 8.0 0.62930 0.32867 0.37482 34 33.0 0.49858 0.33306 0.38254 

10 9.0 0.60764 0.32976 0.37690 35 34.0 0.49755 0.33308 0.38256 

11 10.0 0.59071 0.33052 0.37828 36 35.0 0.49659 0.33309 0.38257 

12 11.0 0.57730 0.33106 0.37924 37 36.0 0.49571 0.33310 0.38259 
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Mean Squared Mean Squared Sl 

No. 
λ 

Canonical 

 1 1( , )r xς  
2 2( , )r xς  

Sl 

No. 
λ 

Canonical 

 1 1( , )r xς  
2 2( , )r xς  

13 12.0 0.56634 0.33146 0.37993 38 37.0 0.49492 0.33311 0.38260 

14 13.0 0.55733 0.33176 0.38044 39 38.0 0.49409 0.33311 0.38261 

15 14.0 0.54983 0.33199 0.38083 40 39.0 0.49333 0.33312 0.38262 

16 15.0 0.54338 0.33217 0.38113 41 40.0 0.49265 0.33313 0.38263 

17 16.0 0.53786 0.33232 0.38137 42 41.0 0.49193 0.33314 0.38264 

18 17.0 0.53310 0.33244 0.38156 43 42.0 0.49132 0.33314 0.38265 

19 18.0 0.52896 0.33253 0.38171 44 43.0 0.49074 0.33315 0.38266 

20 19.0 0.52523 0.33262 0.38185 45 44.0 0.49018 0.33315 0.38267 

21 20.0 0.52196 0.33268 0.38195 46 45.0 0.48958 0.33316 0.38268 

22 21.0 0.51904 0.33274 0.38205 47 46.0 0.48912 0.33316 0.38268 

23 22.0 0.51638 0.33279 0.38212 48 47.0 0.48852 0.33317 0.38269 

24 23.0 0.51395 0.33283 0.38219 49 48.0 0.48812 0.33317 0.38270 

25 24.0 0.51184 0.33287 0.38225 50 49.0 0.48761 0.33317 0.38270 

 

We conduct yet another experiment with the dataset presented in Table 3.1. We find that 
1
ξ  for 

X1 has the representation power 0.661265 (eigenvalue=2.645058) while 
2
ξ for X2 has the 

representation power 0.752979 (eigenvalue=3.764895). The 1 2
( , )r ξ ξ is 0.922764. Against these, results 

of the constrained canonical correlation (for λ=49) are:  mean squared 
1 1

( , )r xς = 0.661261; mean 

squared 
2 2

( , )r xς =0.752966 and the constrained canonical correlation, 
1 2

( , )r ς ς = 0.923647. These 

results are once again corroborative to our earlier findings.   
 

Table 3.1. Simulated Dataset-3 for Canonical correlation 

 
X1 or Dataset-1 X2 or Dataset-2 X1 or Dataset-1 X2 or Dataset-2 Sl   

No. X1

1 

X1

2 

X1

3 

X1

4 

X2

1 

X2

2 

X2

3 

X2

4 

X2

5 

Sl   

No. X1

1 

X1

2 

X1

3 

X1

4 

X2

1 

X2

2 

X2

3 

X2

4 

X2

5 
1 0.7 1.1 1.6 1.3 1.1 0.1 2.7 1.5 1.8 16 2.1 2.7 2.7 1.8 1.8 0.9 6.4 1.6 2.3 

2 1.3 1.2 0.8 1.0 0.3 1.2 1.1 0.4 0.3 17 2.2 2.9 2.6 2.3 3.0 3.0 6.9 1.9 2.8 

3 1.7 2.5 1.8 1.1 1.9 2.3 5.5 2.6 2.1 18 2.6 1.9 2.8 2.2 2.5 2.8 5.0 2.4 3.0 

4 2.9 2.4 1.9 2.8 2.7 2.2 4.9 2.3 1.9 19 1.6 1.3 2.4 3.0 1.7 2.1 4.3 2.0 2.9 

5 0.4 1.0 0.2 0.9 0.5 2.5 1.7 1.0 0.1 20 1.9 0.9 2.9 1.9 1.5 2.0 3.6 2.1 1.4 

6 0.6 0.4 2.2 0.4 1.0 0.8 2.4 1.7 0.4 21 1.5 0.2 0.4 0.7 1.3 1.6 0.8 0.2 0.9 

7 0.8 0.1 0.7 0.8 0.1 0.2 0.4 0.1 0.5 22 1.8 0.5 1.1 0.5 1.2 1.4 2.1 0.8 1.0 

8 2.3 2.8 3.0 2.6 2.6 2.9 6.7 2.5 2.7 23 1.4 0.7 0.5 1.6 0.4 1.9 2.6 2.2 1.5 

9 1.2 2.0 0.9 1.7 2.4 0.7 3.2 1.8 2.0 24 1.0 1.6 0.3 0.1 0.7 1.1 1.2 0.3 0.7 

10 2.4 2.1 2.5 2.5 2.1 1.5 3.9 2.7 1.7 25 0.5 1.8 1.4 2.7 0.2 1.8 3.3 1.3 1.3 

11 0.2 0.6 0.1 1.5 1.4 0.4 0.6 0.5 0.2 26 3.0 2.6 2.3 2.4 2.0 1.7 5.1 3.0 2.2 

12 2.0 1.5 0.6 0.3 0.8 0.6 1.5 0.6 1.6 27 2.5 1.4 1.3 2.1 2.3 2.6 3.8 2.9 2.4 

13 0.9 0.3 1.7 2.0 1.6 0.5 2.5 0.9 0.8 28 0.3 2.2 1.2 0.2 0.9 1.3 2.3 1.1 0.6 

14 2.7 3.0 2.1 2.9 2.8 2.7 7.0 2.8 2.6 29 2.8 2.3 2.0 1.4 2.9 2.4 5.8 1.4 2.5 

15 1.1 0.8 1.0 1.2 0.6 0.3 2.0 1.2 1.2 30 0.1 1.7 1.5 0.6 2.2 1.0 4.2 0.7 1.1 
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Table 3.2. Relationship between Constrained Canonical Correlation and Representation Correlation 

between Canonical Variates and their Constituent Variables for Different Values of λ (Dataset in Table-3.1) 

 
Mean Squared Mean Squared Sl 

No. 
λ 

Canonical 

 1 1( , )r xς  
2 2( , )r xς  

Sl 

No. 
λ 

Canonical 

 1 1( , )r xς  
2 2( , )r xς  

1 0.0 0.94813 0.63711 0.69854 26 25.0 0.92443 0.66125 0.75293 

2 1.0 0.93901 0.65895 0.74485 27 26.0 0.92437 0.66125 0.75294 

3 2.0 0.93449 0.66036 0.74955 28 27.0 0.92431 0.66125 0.75294 

4 3.0 0.93199 0.66076 0.75106 29 28.0 0.92426 0.66125 0.75294 

5 4.0 0.93039 0.66094 0.75175 30 29.0 0.92421 0.66125 0.75294 

6 5.0 0.92927 0.66104 0.75212 31 30.0 0.92417 0.66126 0.75295 

7 6.0 0.92844 0.66110 0.75235 32 31.0 0.92412 0.66126 0.75295 

8 7.0 0.92780 0.66114 0.75250 33 32.0 0.92409 0.66126 0.75295 

9 8.0 0.92729 0.66116 0.75260 34 33.0 0.92405 0.66126 0.75295 

10 9.0 0.92687 0.66118 0.75267 35 34.0 0.92401 0.66126 0.75295 

11 10.0 0.92653 0.66119 0.75272 36 35.0 0.92398 0.66126 0.75295 

12 11.0 0.92624 0.66121 0.75276 37 36.0 0.92394 0.66126 0.75296 

13 12.0 0.92598 0.66121 0.75279 38 37.0 0.92392 0.66126 0.75296 

14 13.0 0.92577 0.66122 0.75282 39 38.0 0.92389 0.66126 0.75296 

15 14.0 0.92558 0.66123 0.75284 40 39.0 0.92386 0.66126 0.75296 

16 15.0 0.92541 0.66123 0.75286 41 40.0 0.92383 0.66126 0.75296 

17 16.0 0.92526 0.66123 0.75287 42 41.0 0.92381 0.66126 0.75296 

18 17.0 0.92513 0.66124 0.75288 43 42.0 0.92378 0.66126 0.75296 

19 18.0 0.92501 0.66124 0.75289 44 43.0 0.92376 0.66126 0.75296 

20 19.0 0.92490 0.66124 0.75290 45 44.0 0.92374 0.66126 0.75296 

21 20.0 0.92481 0.66124 0.75291 46 45.0 0.92372 0.66126 0.75296 

22 21.0 0.92472 0.66125 0.75291 47 46.0 0.92370 0.66126 0.75296 

23 22.0 0.92464 0.66125 0.75292 48 47.0 0.92368 0.66126 0.75297 

24 23.0 0.92455 0.66125 0.75292 49 48.0 0.92366 0.66126 0.75297 

25 24.0 0.92450 0.66125 0.75293 50 49.0 0.92365 0.66126 0.75297 

 

6. A Computer Program for RCCCA 

We developed a computer program in FORTRAN  that we have developed and used for solving 

the problems in this paper (codes available at www.webng.com/economics/rccca.txt, which may also 

be obtained from the author on request). Its main program (RCCCA) is assisted by 13 subroutines. 

The user needs setting the parameters in the main program as well as in the subroutines CORD and 

DORANK. Parameter setting in RPS may seldom be required. This program can be used for obtaining 

Ordinal Canonical Correlation [Mishra, (2009)] also. Different schemes of rank-ordering may be used 

[Wikipedia, (2008)].  
 

7. Concluding Remarks 

Our proposed Representation-Constrained Canonical correlation (RCCCA) Analysis has the 

classical canonical correlation analysis (CCCA) at its one end (λ=0) and the Classical Principal 

Component Analysis (CPCA) at the other (as λ tends to be very large). In between it gives us a 

compromise solution. By a proper choice of λ, one can avoid hijacking of the representation issue of 

two datasets by a lone couple of highly correlated variables across those datasets. This advantage of 

the RCCCA over the CCCA deserves a serious attention by the researchers using statistical tools for 

data analysis. Our method also addresses the problem raised by Sugiyama (2007). 
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