109,555 research outputs found

    Coupled Two-Way Clustering Analysis of Gene Microarray Data

    Get PDF
    We present a novel coupled two-way clustering approach to gene microarray data analysis. The main idea is to identify subsets of the genes and samples, such that when one of these is used to cluster the other, stable and significant partitions emerge. The search for such subsets is a computationally complex task: we present an algorithm, based on iterative clustering, which performs such a search. This analysis is especially suitable for gene microarray data, where the contributions of a variety of biological mechanisms to the gene expression levels are entangled in a large body of experimental data. The method was applied to two gene microarray data sets, on colon cancer and leukemia. By identifying relevant subsets of the data and focusing on them we were able to discover partitions and correlations that were masked and hidden when the full dataset was used in the analysis. Some of these partitions have clear biological interpretation; others can serve to identify possible directions for future research

    Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis

    Get PDF
    Background: Analysing gene expression data from microarray technologies is a very important task in biology and medicine, and particularly in cancer diagnosis. Different from most other popular methods in high dimensional bio-medical data analysis, such as microarray gene expression or proteomics mass spectroscopy data analysis, fuzzy rule-based models can not only provide good classification results, but also easily be explained and interpreted in human understandable terms, by using fuzzy rules. However, the advantages offered by fuzzy-based techniques in microarray data analysis have not yet been fully explored in the literature. Although some recently developed fuzzy-based modeling approaches can provide satisfactory classification results, the rule bases generated by most of the reported fuzzy models for gene expression data are still too large to be easily comprehensible. Results: In this paper, we develop some Multi-Objective Evolutionary Algorithms based Interpretable Fuzzy (MOEAIF) methods for analysing high dimensional bio-medical data sets, such as microarray gene expression data and proteomics mass spectroscopy data. We mainly focus on evaluating our proposed models on microarray gene expression cancer data sets, i.e., the lung cancer data set and the colon cancer data set, but we extend our investigations to other type of cancer data set, such as the ovarian cancer data set. The experimental studies have shown that relatively simple and small fuzzy rule bases, with satisfactory classification performance, can be successfully obtained for challenging microarray gene expression datasets. Conclusions: We believe that fuzzy-based techniques, and in particular the methods proposed in this paper, can be very useful tools in dealing with high dimensional cancer data. We also argue that the potential of applying fuzzy-based techniques to microarray data analysis need to be further explored. </p

    Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes

    Get PDF
    BACKGROUND: The extensive use of DNA microarray technology in the characterization of the cell transcriptome is leading to an ever increasing amount of microarray data from cancer studies. Although similar questions for the same type of cancer are addressed in these different studies, a comparative analysis of their results is hampered by the use of heterogeneous microarray platforms and analysis methods. RESULTS: In contrast to a meta-analysis approach where results of different studies are combined on an interpretative level, we investigate here how to directly integrate raw microarray data from different studies for the purpose of supervised classification analysis. We use median rank scores and quantile discretization to derive numerically comparable measures of gene expression from different platforms. These transformed data are then used for training of classifiers based on support vector machines. We apply this approach to six publicly available cancer microarray gene expression data sets, which consist of three pairs of studies, each examining the same type of cancer, i.e. breast cancer, prostate cancer or acute myeloid leukemia. For each pair, one study was performed by means of cDNA microarrays and the other by means of oligonucleotide microarrays. In each pair, high classification accuracies (> 85%) were achieved with training and testing on data instances randomly chosen from both data sets in a cross-validation analysis. To exemplify the potential of this cross-platform classification analysis, we use two leukemia microarray data sets to show that important genes with regard to the biology of leukemia are selected in an integrated analysis, which are missed in either single-set analysis. CONCLUSION: Cross-platform classification of multiple cancer microarray data sets yields discriminative gene expression signatures that are found and validated on a large number of microarray samples, generated by different laboratories and microarray technologies. Predictive models generated by this approach are better validated than those generated on a single data set, while showing high predictive power and improved generalization performance

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    Regularized gene selection in cancer microarray meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In cancer studies, it is common that multiple microarray experiments are conducted to measure the same clinical outcome and expressions of the same set of genes. An important goal of such experiments is to identify a subset of genes that can potentially serve as predictive markers for cancer development and progression. Analyses of individual experiments may lead to unreliable gene selection results because of the small sample sizes. Meta analysis can be used to pool multiple experiments, increase statistical power, and achieve more reliable gene selection. The meta analysis of cancer microarray data is challenging because of the high dimensionality of gene expressions and the differences in experimental settings amongst different experiments.</p> <p>Results</p> <p>We propose a Meta Threshold Gradient Descent Regularization (MTGDR) approach for gene selection in the meta analysis of cancer microarray data. The MTGDR has many advantages over existing approaches. It allows different experiments to have different experimental settings. It can account for the joint effects of multiple genes on cancer, and it can select the same set of cancer-associated genes across multiple experiments. Simulation studies and analyses of multiple pancreatic and liver cancer experiments demonstrate the superior performance of the MTGDR.</p> <p>Conclusion</p> <p>The MTGDR provides an effective way of analyzing multiple cancer microarray studies and selecting reliable cancer-associated genes.</p

    Genomic Analysis of Stress Response Against Arsenic in \u3cem\u3eCaenorhabditis elegans\u3c/em\u3e

    Get PDF
    Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA

    Comparability of Microarray Data between Amplified and Non Amplified RNA in Colorectal Carcinoma

    Get PDF
    Microarray analysis reaches increasing popularity during the investigation of prognostic gene clusters in oncology. The standardisation of technical procedures will be essential to compare various datasets produced by different research groups. In several projects the amount of available tissue is limited. In such cases the preamplification of RNA might be necessary prior to microarray hybridisation. To evaluate the comparability of microarray results generated either by amplified or non amplified RNA we isolated RNA from colorectal cancer samples (stage UICC IV) following tumour tissue enrichment by macroscopic manual dissection (CMD). One part of the RNA was directly labelled and hybridised to GeneChips (HG-U133A, Affymetrix), the other part of the RNA was amplified according to the ?Eberwine? protocol and was then hybridised to the microarrays. During unsupervised hierarchical clustering the samples were divided in groups regarding the RNA pre-treatment and 5.726 differentially expressed genes were identified. Using independent microarray data of 31 amplified vs. 24 non amplified RNA samples from colon carcinomas (stage UICC III) in a set of 50 predictive genes we validated the amplification bias. In conclusion microarray data resulting from different pre-processing regarding RNA pre-amplification can not be compared within one analysis

    Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While several molecular markers of bladder cancer prognosis have been identified, the limited value of current prognostic markers has created the need for new molecular indicators of bladder cancer outcomes. The aim of this study was to identify genetic signatures associated with disease prognosis in bladder cancer.</p> <p>Results</p> <p>We used 272 primary bladder cancer specimens for microarray analysis and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Microarray gene expression analysis of randomly selected 165 primary bladder cancer specimens as an original cohort was carried out. Risk scores were applied to stratify prognosis-related gene classifiers. Prognosis-related gene classifiers were individually analyzed with tumor invasiveness (non-muscle invasive bladder cancer [NMIBC] and muscle invasive bladder cancer [MIBC]) and prognosis. We validated selected gene classifiers using RT-PCR in the original (165) and independent (107) cohorts. Ninety-seven genes related to disease progression among NMIBC patients were identified by microarray data analysis. Eight genes, a progression-related gene classifier in NMIBC, were selected for RT-PCR. The progression-related gene classifier in patients with NMIBC was closely correlated with progression in both original and independent cohorts. Furthermore, no patient with NMIBC in the good-prognosis signature group experienced cancer progression.</p> <p>Conclusions</p> <p>We identified progression-related gene classifier that has strong predictive value for determining disease outcome in NMIBC. This gene classifier could assist in selecting NMIBC patients who might benefit from more aggressive therapeutic intervention or surveillance.</p

    Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay

    Get PDF
    INTRODUCTION: Predicting the clinical course of breast cancer is often difficult because it is a diverse disease comprised of many biological subtypes. Gene expression profiling by microarray analysis has identified breast cancer signatures that are important for prognosis and treatment. In the current article, we use microarray analysis and a real-time quantitative reverse-transcription (qRT)-PCR assay to risk-stratify breast cancers based on biological 'intrinsic' subtypes and proliferation. METHODS: Gene sets were selected from microarray data to assess proliferation and to classify breast cancers into four different molecular subtypes, designated Luminal, Normal-like, HER2+/ER-, and Basal-like. One-hundred and twenty-three breast samples (117 invasive carcinomas, one fibroadenoma and five normal tissues) and three breast cancer cell lines were prospectively analyzed using a microarray (Agilent) and a qRT-PCR assay comprised of 53 genes. Biological subtypes were assigned from the microarray and qRT-PCR data by hierarchical clustering. A proliferation signature was used as a single meta-gene (log(2 )average of 14 genes) to predict outcome within the context of estrogen receptor status and biological 'intrinsic' subtype. RESULTS: We found that the qRT-PCR assay could determine the intrinsic subtype (93% concordance with microarray-based assignments) and that the intrinsic subtypes were predictive of outcome. The proliferation meta-gene provided additional prognostic information for patients with the Luminal subtype (P = 0.0012), and for patients with estrogen receptor-positive tumors (P = 3.4 × 10(-6)). High proliferation in the Luminal subtype conferred a 19-fold relative risk of relapse (confidence interval = 95%) compared with Luminal tumors with low proliferation. CONCLUSION: A real-time qRT-PCR assay can recapitulate microarray classifications of breast cancer and can risk-stratify patients using the intrinsic subtype and proliferation. The proliferation meta-gene offers an objective and quantitative measurement for grade and adds significant prognostic information to the biological subtypes

    Comparing Prediction Accuracy for Supervised Techniques in Gene Expression Data

    Get PDF
    Classification is one of the most important tasks for different application such as text categorization, tone recognition, image classification, micro-array gene expression, proteins structure predictions, data classification etc. Microarray based gene expression profiling has been emerged as an efficient technique for cancer classification, as well as for diagnosis, prognosis, and treatment purposes. The classification of different tumor types is of great significance in cancer diagnosis and drug innovation. One challenging area in the studies of gene expression data is the classification of different types of tumors into correct classes. Diagonal discriminant analysis, regularized discriminant analysis, support vector machines and k-nearest neighbor have been suggested as among the best methods for small sample size situations. The methods are applied to datasets from four recently published cancer gene expression studies. Four publicly available microarray data sets are Leukemia, Lymphoma, SRBCT &amp; Prostate. The performance of the classification technique has been evaluated according to the percentage of misclassification through hold-out cross validation
    corecore