31 research outputs found

    Fingerprint template protection schemes: A literature review

    Get PDF
    The fingerprint is the most widely used technology for identification or authentication systems, which can be known as fingerprint authentication systems (FAS).In addition to providing security, the fingerprint is also easy to use, very reliable and has a high accuracy for identity recognition. FAS is still exposed to security attacks because fingerprint information is unencrypted.Therefore, fingerprint information requires protection known as fingerprint template protection (FTP).This paper aims to provide an organized literature on FTP.Three research questions were formulated to guide the literature analysis.First, this analysis focuses on the types of FTP schemes; second, the metrics used for evaluating the FTP schemes; and finally, the common datasets used for evaluating the FTP schemes. The latest information and references are analysed and classified based on FTP methods and publication year to obtain information related to the development and application of FTP.This study mainly surveyed 62 documents reported on FTP schemes between the year 2000 and 2017.The results of this survey can be a source of reference for other researchers in finding literature relevant to the FTP

    A fingerprint based crypto-biometric system for secure communication

    Full text link
    To ensure the secure transmission of data, cryptography is treated as the most effective solution. Cryptographic key is an important entity in this procedure. In general, randomly generated cryptographic key (of 256 bits) is difficult to remember. However, such a key needs to be stored in a protected place or transported through a shared communication line which, in fact, poses another threat to security. As an alternative, researchers advocate the generation of cryptographic key using the biometric traits of both sender and receiver during the sessions of communication, thus avoiding key storing and at the same time without compromising the strength in security. Nevertheless, the biometric-based cryptographic key generation possesses few concerns such as privacy of biometrics, sharing of biometric data between both communicating users (i.e., sender and receiver), and generating revocable key from irrevocable biometric. This work addresses the above-mentioned concerns. In this work, a framework for secure communication between two users using fingerprint based crypto-biometric system has been proposed. For this, Diffie-Hellman (DH) algorithm is used to generate public keys from private keys of both sender and receiver which are shared and further used to produce a symmetric cryptographic key at both ends. In this approach, revocable key for symmetric cryptography is generated from irrevocable fingerprint. The biometric data is neither stored nor shared which ensures the security of biometric data, and perfect forward secrecy is achieved using session keys. This work also ensures the long-term security of messages communicated between two users. Based on the experimental evaluation over four datasets of FVC2002 and NIST special database, the proposed framework is privacy-preserving and could be utilized onto real access control systems.Comment: 29 single column pages, 8 figure

    An enhanced fingerprint template protection scheme

    Get PDF
    Fingerprint template protection (FTP) is required to secure authentication due to fingerprint has been widely used for user authentication systems. Fingerprint authentication consists of a microcontroller, fingerprint sensor, secure access control, and human interface. However, as many users frequently assess the systems, fingerprints could be replicated and modified by attackers. Currently, most existing FTP schemes fail to meet the properties of fingerprint authentication systems, namely diversity, revocability, security, and match/recognition performance, due to intra-user variability in fingerprint identifiers and matching issues in unencrypted domains. Therefore, this study aims to enhance the existing schemes by using chaos-based encryption and hash functions to meet the specified properties by securing users’ fingerprint templates (FT) within the embedded systems. Furthermore, an improved chaos-based encryption algorithm was proposed for encrypting FT. The MATLAB simulation with Fingerprint Verification Competition (FVC) 2002 database was used to measure the encryption results, secret key spaces, key sensitivity, histogram, correlation, differential, entropy information, matching/recognition analysis, and revocability. The proposed FTP scheme was also evaluated using Burrows–Abadi– Needham (BAN) logic analysis for protocol robustness with resistance to replay attacks, stolen-verifier attacks, and perfect forward secrecy. The results demonstrate that the enhanced chaos-based encryption algorithm for FTP improves its encryption time, which is 0.24 seconds faster than the selected benchmark study. The enhanced FTP scheme also achieved security, revocability, diversity, and matching/recognition performance properties. The matching/recognition performance evaluation produced higher verification rates and a low false rejection rate. The rates were 99.10 % and 0.90%, respectively. The equal error rate decreased from 2.10% to 1.05%. As a conclusion, the enhanced FTP scheme could be an alternative to the existing FTP for embedded system authentication to withstand various possible attacks and provides the desired security features. The scheme also can be a reference to comprehensive security analysis

    Privacy-Preserving Biometric Authentication

    Full text link
    Biometric-based authentication provides a highly accurate means of authentication without requiring the user to memorize or possess anything. However, there are three disadvantages to the use of biometrics in authentication; any compromise is permanent as it is impossible to revoke biometrics; there are significant privacy concerns with the loss of biometric data; and humans possess only a limited number of biometrics, which limits how many services can use or reuse the same form of authentication. As such, enhancing biometric template security is of significant research interest. One of the methodologies is called cancellable biometric template which applies an irreversible transformation on the features of the biometric sample and performs the matching in the transformed domain. Yet, this is itself susceptible to specific classes of attacks, including hill-climb, pre-image, and attacks via records multiplicity. This work has several outcomes and contributions to the knowledge of privacy-preserving biometric authentication. The first of these is a taxonomy structuring the current state-of-the-art and provisions for future research. The next of these is a multi-filter framework for developing a robust and secure cancellable biometric template, designed specifically for fingerprint biometrics. This framework is comprised of two modules, each of which is a separate cancellable fingerprint template that has its own matching and measures. The matching for this is based on multiple thresholds. Importantly, these methods show strong resistance to the above-mentioned attacks. Another of these outcomes is a method that achieves a stable performance and can be used to be embedded into a Zero-Knowledge-Proof protocol. In this novel method, a new strategy was proposed to improve the recognition error rates which is privacy-preserving in the untrusted environment. The results show promising performance when evaluated on current datasets

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    A New Scheme for the Polynomial Based Biometric Cryptosystems

    Get PDF
    corecore