9 research outputs found

    [<sup>18</sup>F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    Get PDF
    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association of positron emission tomography (PET) labeling techniques in line with the “one-pot” development of biologically active compounds has the potential to become relevant not only for the evaluation and characterization of those MCR products through molecular imaging, but also to increase the library of radiotracers available. Therefore, since the [18F]fluorination of arylboronic acid pinacol ester derivatives tolerates electron-poor and electro-rich arenes and various functional groups,(2) the main goal of this research work was to achieve the 18F-radiolabeling of several different molecules synthesized through MCR. Materials and Methods: [18F]Fluorination of boronic acid pinacol esters was first extensively optimized using a benzaldehyde derivative in relation to the ideal amount of Cu(II) catalyst and precursor to be used, as well as the reaction solvent. Radiochemical conversion (RCC) yields were assessed by TLC-SG. The optimized radiolabeling conditions were subsequently applied to several structurally different MCR scaffolds comprising biologically relevant pharmacophores (e.g. β-lactam, morpholine, tetrazole, oxazole) that were synthesized to specifically contain a boronic acid pinacol ester group. Results: Radiolabeling with fluorine-18 was achieved with volumes (800 μl) and activities (≤ 2 GBq) compatible with most radiochemistry techniques and modules. In summary, an increase in the quantities of precursor or Cu(II) catalyst lead to higher conversion yields. An optimal amount of precursor (0.06 mmol) and Cu(OTf)2(py)4 (0.04 mmol) was defined for further reactions, with DMA being a preferential solvent over DMF. RCC yields from 15% to 76%, depending on the scaffold, were reproducibly achieved. Interestingly, it was noticed that the structure of the scaffolds, beyond the arylboronic acid, exerts some influence in the final RCC, with electron-withdrawing groups in the para position apparently enhancing the radiolabeling yield. Conclusion: The developed method with high RCC and reproducibility has the potential to be applied in line with MCR and also has a possibility to be incorporated in a later stage of this convergent “one-pot” synthesis strategy. Further studies are currently ongoing to apply this radiolabeling concept to fluorine-containing approved drugs whose boronic acid pinacol ester precursors can be synthesized through MCR (e.g. atorvastatin)

    POSTER SESSIONS

    Get PDF

    Radiobiology Textbook:Space Radiobiology

    Get PDF
    The study of the biologic effects of space radiation is considered a “hot topic,” with increased interest in the past years. In this chapter, the unique characteristics of the space radiation environment will be covered, from their history, characterization, and biological effects to the research that has been and is being conducted in the field. After a short introduction, you will learn the origin and characterization of the different types of space radiation and the use of mathematical models for the prediction of the radiation doses during different mission scenarios and estimate the biological risks due to this exposure. Following this, the acute, chronic, and late effects of radiation exposure in the human body are discussed before going into the detailed biomolecular changes affecting cells and tissues, and in which ways they differ from other types of radiation exposure. The next sections of this chapter are dedicated to the vast research that has been developed through the years concerning space radiation biology, from small animals to plant models and 3D cell cultures, the use of extremophiles in the study of radiation resistance mechanisms to the importance of ground-based irradiation facilities to simulate and study the space environment

    Evaluation of PD-L1 expression in various formalin-fixed paraffin embedded tumour tissue samples using SP263, SP142 and QR1 antibody clones

    Get PDF
    Background & objectives: Cancer cells can avoid immune destruction through the inhibitory ligand PD-L1. PD-1 is a surface cell receptor, part of the immunoglobulin family. Its ligand PD-L1 is expressed by tumour cells and stromal tumour infltrating lymphocytes (TIL). Methods: Forty-four cancer cases were included in this study (24 triple-negative breast cancers (TNBC), 10 non-small cell lung cancer (NSCLC) and 10 malignant melanoma cases). Three clones of monoclonal primary antibodies were compared: QR1 (Quartett), SP 142 and SP263 (Ventana). For visualization, ultraView Universal DAB Detection Kit from Ventana was used on an automated platform for immunohistochemical staining Ventana BenchMark GX. Results: Comparing the sensitivity of two different clones on same tissue samples from TNBC, we found that the QR1 clone gave higher percentage of positive cells than clone SP142, but there was no statistically significant difference. Comparing the sensitivity of two different clones on same tissue samples from malignant melanoma, the SP263 clone gave higher percentage of positive cells than the QR1 clone, but again the difference was not statistically significant. Comparing the sensitivity of two different clones on same tissue samples from NSCLC, we found higher percentage of positive cells using the QR1 clone in comparison with the SP142 clone, but once again, the difference was not statistically significant. Conclusion: The three different antibody clones from two manufacturers Ventana and Quartett, gave comparable results with no statistically significant difference in staining intensity/ percentage of positive tumour and/or immune cells. Therefore, different PD-L1 clones from different manufacturers can potentially be used to evaluate the PD- L1 status in different tumour tissues. Due to the serious implications of the PD-L1 analysis in further treatment decisions for cancer patients, every antibody clone, staining protocol and evaluation process should be carefully and meticulously validated

    Florida Undergraduate Research Conference

    Get PDF
    FURC serves as a multi-disciplinary conference through which undergraduate students from the state of Florida can present their research. February 16-17, 2024https://digitalcommons.unf.edu/university_events/1006/thumbnail.jp
    corecore