947 research outputs found

    Embedded middleware for smart camera networks and sensor fusion

    Get PDF
    Abstract Smart cameras are an interesting research field that has evolved over the last decade. In this chapter we focus on the integration of multiple, potentially heterogeneous, smart cameras into a distributed system for computer vision and sensor fusion. An important aspect for every distributed system is the system-level software, also called middleware. Hence, we discuss the requirements on middleware for distributed smart cameras and the services such a middleware has to provide. In our opinion a middleware following the agent-oriented paradigm allows to build flexible and self-organizing applications that encourage a modular design

    Socio-economic vision graph generation and handover in distributed smart camera networks

    Get PDF
    In this article we present an approach to object tracking handover in a network of smart cameras, based on self-interested autonomous agents, which exchange responsibility for tracking objects in a market mechanism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to learn the vision graph, that is, the camera neighbourhood relations, during runtime, which may then be used to optimise communication between cameras. The key benefits of our completely decentralised approach are on the one hand generating the vision graph online, enabling efficient deployment in unknown scenarios and camera network topologies, and on the other hand relying only on local information, increasing the robustness of the system. Since our market-based approach does not rely on a priori topology information, the need for any multicamera calibration can be avoided. We have evaluated our approach both in a simulation study and in network of real distributed smart cameras

    A socio-economic approach to online vision graph generation and handover in distributed smart camera networks

    Get PDF
    Abstract—In this paper we propose an approach based on selfinterested autonomous cameras, which exchange responsibility for tracking objects in a market mechanism, in order to maximise their own utility. A novel ant-colony inspired mechanism is used to grow the vision graph during runtime, which may then be used to optimise communication between cameras. The key benefits of our completely decentralised approach are on the one hand generating the vision graph online which permits the addition and removal cameras to the network during runtime and on the other hand relying only on local information, increasing the robustness of the system. Since our market-based approach does not rely on a priori topology information, the need for any multicamera calibration can be avoided. Index Terms—Smart camera networks; multi-camera tracking; market-based control; topology identification; ant algorithms. I

    A Survey on Behavior Analysis in Video Surveillance Applications

    Get PDF

    The Virtual Device: Expanding Wireless Communication Services Through Service Discovery and Session Mobility

    Get PDF
    We present a location-based, ubiquitous service architecture, based on the Session Initiation Protocol (SIP) and a service discovery protocol that enables users to enhance the multimedia communications services available on their mobile devices by discovering other local devices, and including them in their active sessions, creating a 'virtual device.' We have implemented our concept based on Columbia University's multimedia environment and we show its feasibility by a performance analysis

    Dynamic Reconfiguration in Camera Networks: A Short Survey

    Get PDF
    There is a clear trend in camera networks towards enhanced functionality and flexibility, and a fixed static deployment is typically not sufficient to fulfill these increased requirements. Dynamic network reconfiguration helps to optimize the network performance to the currently required specific tasks while considering the available resources. Although several reconfiguration methods have been recently proposed, e.g., for maximizing the global scene coverage or maximizing the image quality of specific targets, there is a lack of a general framework highlighting the key components shared by all these systems. In this paper we propose a reference framework for network reconfiguration and present a short survey of some of the most relevant state-of-the-art works in this field, showing how they can be reformulated in our framework. Finally we discuss the main open research challenges in camera network reconfiguration
    • …
    corecore