9 research outputs found

    Auto-Calibration and Biconvex Compressive Sensing with Applications to Parallel MRI

    Full text link
    We study an auto-calibration problem in which a transform-sparse signal is compressive-sensed by multiple sensors in parallel with unknown sensing parameters. The problem has an important application in pMRI reconstruction, where explicit coil calibrations are often difficult and costly to achieve in practice, but nevertheless a fundamental requirement for high-precision reconstructions. Most auto-calibrated strategies result in reconstruction that corresponds to solving a challenging biconvex optimization problem. We transform the auto-calibrated parallel sensing as a convex optimization problem using the idea of `lifting'. By exploiting sparsity structures in the signal and the redundancy introduced by multiple sensors, we solve a mixed-norm minimization problem to recover the underlying signal and the sensing parameters simultaneously. Robust and stable recovery guarantees are derived in the presence of noise and sparsity deficiencies in the signals. For the pMRI application, our method provides a theoretically guaranteed approach to self-calibrated parallel imaging to accelerate MRI acquisitions under appropriate assumptions. Developments in MRI are discussed, and numerical simulations using the analytical phantom and simulated coil sensitives are presented to support our theoretical results.Comment: Keywords: Self-calibration, Compressive sensing, Convex optimization, Random matrices, Parallel MR

    Learning to sample in Cartesian MRI

    Full text link
    Despite its exceptional soft tissue contrast, Magnetic Resonance Imaging (MRI) faces the challenge of long scanning times compared to other modalities like X-ray radiography. Shortening scanning times is crucial in clinical settings, as it increases patient comfort, decreases examination costs and improves throughput. Recent advances in compressed sensing (CS) and deep learning allow accelerated MRI acquisition by reconstructing high-quality images from undersampled data. While reconstruction algorithms have received most of the focus, designing acquisition trajectories to optimize reconstruction quality remains an open question. This thesis explores two approaches to address this gap in the context of Cartesian MRI. First, we propose two algorithms, lazy LBCS and stochastic LBCS, that significantly improve upon G\"ozc\"u et al.'s greedy learning-based CS (LBCS) approach. These algorithms scale to large, clinically relevant scenarios like multi-coil 3D MR and dynamic MRI, previously inaccessible to LBCS. Additionally, we demonstrate that generative adversarial networks (GANs) can serve as a natural criterion for adaptive sampling by leveraging variance in the measurement domain to guide acquisition. Second, we delve into the underlying structures or assumptions that enable mask design algorithms to perform well in practice. Our experiments reveal that state-of-the-art deep reinforcement learning (RL) approaches, while capable of adaptation and long-horizon planning, offer only marginal improvements over stochastic LBCS, which is neither adaptive nor does long-term planning. Altogether, our findings suggest that stochastic LBCS and similar methods represent promising alternatives to deep RL. They shine in particular by their scalability and computational efficiency and could be key in the deployment of optimized acquisition trajectories in Cartesian MRI.Comment: PhD Thesis; 198 page

    Calibrationless parallel MRI using CLEAR

    No full text
    corecore