2 research outputs found

    Ground, Proximal, and Satellite Remote Sensing of Soil Moisture

    Get PDF
    Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security

    Calibration of the L-MEB Model for Croplands in HiWATER Using PLMR Observation

    No full text
    The Soil Moisture and Ocean Salinity (SMOS) mission was initiated in 2009 with the goal of acquiring global soil moisture data over land using multi-angular L-band radiometric measurements. Specifically, surface soil moisture was estimated using the L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model. This study evaluated the applicability of this model to the Heihe River Basin in Northern China for specific underlying surfaces by simulating brightness temperature (BT) with the L-MEB model. To analyze the influence of a ground sampling strategy on the simulations, two resampling methods based on ground observations were compared. In the first method, the simulated BT of each point observation was initially acquired. The simulations were then resampled at a 1 km resolution. The other method was based on gridded data with a resolution of 1 km averaged from point observations, such as soil moisture, soil temperature, and soil texture. The simulated BTs at a 1 km resolution were then obtained using the L-MEB model. Because of the large variability in soil moisture, the resampling method based on gridded data was used in the simulation. The simulated BTs based on the calibrated parameters were validated using airborne L-band data from the Polarimetric L-band Multibeam Radiometer (PLMR) acquired during the HiWATER project. The root mean square errors (RMSEs) between the simulated results and the PLMR data were 6 to 7 K for V-polarization and 3 to 5 K for H-polarization at different angles. These results demonstrate that the model effectively represents agricultural land surfaces, and this study will serve as a reference for applying the L-MEB model in arid regions and for selecting a ground sampling strategy
    corecore