6 research outputs found

    Efficient, sparse representation of manifold distance matrices for classical scaling

    Full text link
    Geodesic distance matrices can reveal shape properties that are largely invariant to non-rigid deformations, and thus are often used to analyze and represent 3-D shapes. However, these matrices grow quadratically with the number of points. Thus for large point sets it is common to use a low-rank approximation to the distance matrix, which fits in memory and can be efficiently analyzed using methods such as multidimensional scaling (MDS). In this paper we present a novel sparse method for efficiently representing geodesic distance matrices using biharmonic interpolation. This method exploits knowledge of the data manifold to learn a sparse interpolation operator that approximates distances using a subset of points. We show that our method is 2x faster and uses 20x less memory than current leading methods for solving MDS on large point sets, with similar quality. This enables analyses of large point sets that were previously infeasible.Comment: Conference CVPR 201

    Non-rigid registration of 3D surfaces by deformable 2D triangular meshes

    Full text link

    Geometric modeling of non-rigid 3D shapes : theory and application to object recognition.

    Get PDF
    One of the major goals of computer vision is the development of flexible and efficient methods for shape representation. This is true, especially for non-rigid 3D shapes where a great variety of shapes are produced as a result of deformations of a non-rigid object. Modeling these non-rigid shapes is a very challenging problem. Being able to analyze the properties of such shapes and describe their behavior is the key issue in research. Also, considering photometric features can play an important role in many shape analysis applications, such as shape matching and correspondence because it contains rich information about the visual appearance of real objects. This new information (contained in photometric features) and its important applications add another, new dimension to the problem\u27s difficulty. Two main approaches have been adopted in the literature for shape modeling for the matching and retrieval problem, local and global approaches. Local matching is performed between sparse points or regions of the shape, while the global shape approaches similarity is measured among entire models. These methods have an underlying assumption that shapes are rigidly transformed. And Most descriptors proposed so far are confined to shape, that is, they analyze only geometric and/or topological properties of 3D models. A shape descriptor or model should be isometry invariant, scale invariant, be able to capture the fine details of the shape, computationally efficient, and have many other good properties. A shape descriptor or model is needed. This shape descriptor should be: able to deal with the non-rigid shape deformation, able to handle the scale variation problem with less sensitivity to noise, able to match shapes related to the same class even if these shapes have missing parts, and able to encode both the photometric, and geometric information in one descriptor. This dissertation will address the problem of 3D non-rigid shape representation and textured 3D non-rigid shapes based on local features. Two approaches will be proposed for non-rigid shape matching and retrieval based on Heat Kernel (HK), and Scale-Invariant Heat Kernel (SI-HK) and one approach for modeling textured 3D non-rigid shapes based on scale-invariant Weighted Heat Kernel Signature (WHKS). For the first approach, the Laplace-Beltrami eigenfunctions is used to detect a small number of critical points on the shape surface. Then a shape descriptor is formed based on the heat kernels at the detected critical points for different scales. Sparse representation is used to reduce the dimensionality of the calculated descriptor. The proposed descriptor is used for classification via the Collaborative Representation-based Classification with a Regularized Least Square (CRC-RLS) algorithm. The experimental results have shown that the proposed descriptor can achieve state-of-the-art results on two benchmark data sets. For the second approach, an improved method to introduce scale-invariance has been also proposed to avoid noise-sensitive operations in the original transformation method. Then a new 3D shape descriptor is formed based on the histograms of the scale-invariant HK for a number of critical points on the shape at different time scales. A Collaborative Classification (CC) scheme is then employed for object classification. The experimental results have shown that the proposed descriptor can achieve high performance on the two benchmark data sets. An important observation from the experiments is that the proposed approach is more able to handle data under several distortion scenarios (noise, shot-noise, scale, and under missing parts) than the well-known approaches. For modeling textured 3D non-rigid shapes, this dissertation introduces, for the first time, a mathematical framework for the diffusion geometry on textured shapes. This dissertation presents an approach for shape matching and retrieval based on a weighted heat kernel signature. It shows how to include photometric information as a weight over the shape manifold, and it also propose a novel formulation for heat diffusion over weighted manifolds. Then this dissertation presents a new discretization method for the weighted heat kernel induced by the linear FEM weights. Finally, the weighted heat kernel signature is used as a shape descriptor. The proposed descriptor encodes both the photometric, and geometric information based on the solution of one equation. Finally, this dissertation proposes an approach for 3D face recognition based on the front contours of heat propagation over the face surface. The front contours are extracted automatically as heat is propagating starting from a detected set of landmarks. The propagation contours are used to successfully discriminate the various faces. The proposed approach is evaluated on the largest publicly available database of 3D facial images and successfully compared to the state-of-the-art approaches in the literature. This work can be extended to the problem of dense correspondence between non-rigid shapes. The proposed approaches with the properties of the Laplace-Beltrami eigenfunction can be utilized for 3D mesh segmentation. Another possible application of the proposed approach is the view point selection for 3D objects by selecting the most informative views that collectively provide the most descriptive presentation of the surface

    3D Shape Descriptor-Based Facial Landmark Detection: A Machine Learning Approach

    Get PDF
    Facial landmark detection on 3D human faces has had numerous applications in the literature such as establishing point-to-point correspondence between 3D face models which is itself a key step for a wide range of applications like 3D face detection and authentication, matching, reconstruction, and retrieval, to name a few. Two groups of approaches, namely knowledge-driven and data-driven approaches, have been employed for facial landmarking in the literature. Knowledge-driven techniques are the traditional approaches that have been widely used to locate landmarks on human faces. In these approaches, a user with sucient knowledge and experience usually denes features to be extracted as the landmarks. Data-driven techniques, on the other hand, take advantage of machine learning algorithms to detect prominent features on 3D face models. Besides the key advantages, each category of these techniques has limitations that prevent it from generating the most reliable results. In this work we propose to combine the strengths of the two approaches to detect facial landmarks in a more ecient and precise way. The suggested approach consists of two phases. First, some salient features of the faces are extracted using expert systems. Afterwards, these points are used as the initial control points in the well-known Thin Plate Spline (TPS) technique to deform the input face towards a reference face model. Second, by exploring and utilizing multiple machine learning algorithms another group of landmarks are extracted. The data-driven landmark detection step is performed in a supervised manner providing an information-rich set of training data in which a set of local descriptors are computed and used to train the algorithm. We then, use the detected landmarks for establishing point-to-point correspondence between the 3D human faces mainly using an improved version of Iterative Closest Point (ICP) algorithms. Furthermore, we propose to use the detected landmarks for 3D face matching applications

    NON-RIGID BODY MECHANICAL PROPERTY RECOVERY FROM IMAGES AND VIDEOS

    Get PDF
    Material property has great importance in surgical simulation and virtual reality. The mechanical properties of the human soft tissue are critical to characterize the tissue deformation of each patient. Studies have shown that the tissue stiffness described by the tissue properties may indicate abnormal pathological process. The (recovered) elasticity parameters can assist surgeons to perform better pre-op surgical planning and enable medical robots to carry out personalized surgical procedures. Traditional elasticity parameters estimation methods rely largely on known external forces measured by special devices and strain field estimated by landmarks on the deformable bodies. Or they are limited to mechanical property estimation for quasi-static deformation. For virtual reality applications such as virtual try-on, garment material capturing is of equal significance as the geometry reconstruction. In this thesis, I present novel approaches for automatically estimating the material properties of soft bodies from images or from a video capturing the motion of the deformable body. I use a coupled simulation-optimization-identification framework to deform one soft body at its original, non-deformed state to match the deformed geometry of the same object in its deformed state. The optimal set of material parameters is thereby determined by minimizing the error metric function. This method can simultaneously recover the elasticity parameters of multiple regions of soft bodies using Finite Element Method-based simulation (of either linear or nonlinear materials undergoing large deformation) and particle-swarm optimization methods. I demonstrate the effectiveness of this approach on real-time interaction with virtual organs in patient-specific surgical simulation, using parameters acquired from low-resolution medical images. With the recovered elasticity parameters and the age of the prostate cancer patients as features, I build a cancer grading and staging classifier. The classifier achieves up to 91% for predicting cancer T-Stage and 88% for predicting Gleason score. To recover the mechanical properties of soft bodies from a video, I propose a method which couples statistical graphical model with FEM simulation. Using this method, I can recover the material properties of a soft ball from a high-speed camera video that captures the motion of the ball. Furthermore, I extend the material recovery framework to fabric material identification. I propose a novel method for garment material extraction from a single-view image and a learning based cloth material recovery method from a video recording the motion of the cloth. Most recent garment capturing techniques rely on acquiring multiple views of clothing, which may not always be readily available, especially in the case of pre-existing photographs from the web. As an alternative, I propose a method that can compute a 3D model of a human body and its outfit from a single photograph with little human interaction. My proposed learning-based cloth material type recovery method exploits simulated data-set and deep neural network. I demonstrate the effectiveness of my algorithms by re-purposing the reconstructed garments for virtual try-on, garment transfer, and cloth animation on digital characters. With the recovered mechanical properties, one can construct a virtual world with soft objects exhibiting real-world behaviors.Doctor of Philosoph

    Atlas Construction for Measuring the Variability of Complex Anatomical Structures

    Get PDF
    RÉSUMÉ La recherche sur l'anatomie humaine, en particulier sur le cœur et le cerveau, est d'un intérêt particulier car leurs anomalies entraînent des pathologies qui sont parmi les principales causes de décès dans le monde et engendrent des coûts substantiels. Heureusement, les progrès en imagerie médicale permettent des diagnostics et des traitements autrefois impossibles. En contrepartie, la quantité phénoménale de données produites par ces technologies nécessite le développement d'outils efficaces pour leur traitement. L'objectif de cette thèse est de proposer un ensemble d'outils permettant de normaliser des mesures prélevées sur différents individus, essentiels à l'étude des caractéristiques de structures anatomiques complexes. La normalisation de mesures consiste à rassembler une collection d'images dans une référence commune, aussi appelée construction d'atlas numériques, afin de combiner des mesures provenant de différents patients. Le processus de construction inclut deux étapes principales; la segmentation d'images pour trouver des régions d'intérêts et le recalage d'images afin de déterminer les correspondances entres régions d'intérêts. Les méthodes actuelles de constructions d'atlas peuvent nécessiter des interventions manuelles, souvent fastidieuses, variables, et sont en outre limitées par leurs mécanismes internes. Principalement, le recalage d'images dépend d'une déformation incrémentales d'images sujettes a des minimums locaux. Le recalage n'est ainsi pas optimal lors de grandes déformations et ces limitations requièrent la nécessite de proposer de nouvelles approches pour la construction d'atlas. Les questions de recherche de cette thèse se concentrent donc sur l'automatisation des méthodes actuelles ainsi que sur la capture de déformations complexes de structures anatomiques, en particulier sur le cœur et le cerveau. La méthodologie adoptée a conduit à trois objectifs de recherche spécifiques. Le premier prévoit un nouveau cadre de construction automatise d'atlas afin de créer le premier atlas humain de l'architecture de fibres cardiaques. Le deuxième vise à explorer une nouvelle approche basée sur la correspondance spectrale, nommée FOCUSR, afin de capturer une grande variabilité de formes sur des maillages. Le troisième aboutit finalement à développer une approche fondamentalement différente pour le recalage d'images à fortes déformations, nommée les démons spectraux. Le premier objectif vise plus particulièrement à construire un atlas statistique de l'architecture des fibres cardiaques a partir de 10 cœurs ex vivo humains. Le système développé a mené à deux contributions techniques et une médicale, soit l'amélioration de la segmentation de structures cardiaques et l'automatisation du calcul de forme moyenne, ainsi que notamment la première étude chez l'homme de la variabilité de l'architecture des fibres cardiaques. Pour résumer les principales conclusions, les fibres du cœur humain moyen varient de +- 12 degrés, l'angle d'helix s'étend entre -41 degrés (+- 26 degrés) sur l'épicarde à +66 degrés (+- 15 degrés) sur l'endocarde, tandis que l'angle transverse varie entre +9 degrés (+- 12 degrés) et +34 degrés (+- 29 degrés) à travers le myocarde. Ces résultats sont importants car ces fibres jouent un rôle clef dans diverses fonctions mécaniques et électrophysiologiques du cœur. Le deuxième objectif cherche à capturer une grande variabilité de formes entre structures anatomiques complexes, plus particulièrement entre cortex cérébraux à cause de l'extrême variabilité de ces surfaces et de leur intérêt pour l'étude de fonctions cognitives. La nouvelle méthode de correspondance surfacique, nommée FOCUSR, exploite des représentations spectrales car l'appariement devient plus facile et rapide dans le domaine spectral plutôt que dans l'espace Euclidien classique. Dans sa forme la plus simple, FOCUSR améliore les méthodes spectrales actuelles par un recalage non rigide des représentations spectrales, toutefois, son plein potentiel est atteint en exploitant des données supplémentaires lors de la mise en correspondance. Par exemple, les résultats ont montré que la profondeur des sillons et de la courbure du cortex cérébral améliore significativement la correspondance de surfaces de cerveaux. Enfin, le troisième objectif vise à améliorer le recalage d'images d'organes ayant des fortes variabilités entre individus ou subis de fortes déformations, telles que celles créées par le mouvement cardiaque. La méthodologie amenée par la correspondance spectrale permet d'améliorer les approches conventionnelles de recalage d'images. En effet, les représentations spectrales, capturant des similitudes géométriques globales entre différentes formes, permettent de surmonter les limitations actuelles des méthodes de recalage qui restent guidées par des forces locales. Le nouvel algorithme, nommé démons spectraux, peut ainsi supporter de très grandes déformations locales et complexes entre images, et peut être tout autant adapté a d'autres approches, telle que dans un cadre de recalage conjoint d'images. Il en résulte un cadre complet de construction d'atlas, nommé démons spectraux multijoints, où la forme moyenne est calculée directement lors du processus de recalage plutôt qu'avec une approche séquentielle de recalage et de moyennage. La réalisation de ces trois objectifs spécifiques a permis des avancées dans l'état de l'art au niveau des méthodes de correspondance spectrales et de construction d'atlas, en permettant l'utilisation d'organes présentant une forte variabilité de formes. Dans l'ensemble, les différentes stratégies fournissent de nouvelles contributions sur la façon de trouver et d'exploiter des descripteurs globaux d'images et de surfaces. D'un point de vue global, le développement des objectifs spécifiques établit un lien entre : a) la première série d'outils, mettant en évidence les défis à recaler des images à fortes déformations, b) la deuxième série d'outils, servant à capturer de fortes déformations entre surfaces mais qui ne reste pas directement applicable a des images, et c) la troisième série d'outils, faisant un retour sur le traitement d'images en permettant la construction d'atlas a partir d'images ayant subies de fortes déformations. Il y a cependant plusieurs limitations générales qui méritent d'être investiguées, par exemple, les données partielles (tronquées ou occluses) ne sont pas actuellement prises en charge les nouveaux outils, ou encore, les stratégies algorithmiques utilisées laissent toujours place à l'amélioration. Cette thèse donne de nouvelles perspectives dans les domaines de l'imagerie cardiaque et de la neuroimagerie, toutefois, les nouveaux outils développés sont assez génériques pour être appliqués a tout recalage d'images ou de surfaces. Les recommandations portent sur des recherches supplémentaires qui établissent des liens avec la segmentation à base de graphes, pouvant conduire à un cadre complet de construction d'atlas où la segmentation, le recalage, et le moyennage de formes seraient tous interdépendants. Il est également recommandé de poursuivre la recherche sur la construction de meilleurs modèles électromécaniques cardiaques à partir des résultats de cette thèse. En somme, les nouveaux outils offrent de nouvelles bases de recherche et développement pour la normalisation de formes, ce qui peut potentiellement avoir un impact sur le diagnostic, ainsi que la planification et la pratique d'interventions médicales.----------ABSTRACT Research on human anatomy, in particular on the heart and the brain, is a primary concern for society since their related diseases are among top killers across the globe and have exploding associated costs. Fortunately, recent advances in medical imaging offer new possibilities for diagnostics and treatments. On the other hand, the growth in data produced by these relatively new technologies necessitates the development of efficient tools for processing data. The focus of this thesis is to provide a set of tools for normalizing measurements across individuals in order to study complex anatomical characteristics. The normalization of measurements consists of bringing a collection of images into a common reference, also known as atlas construction, in order to combine measurements made on different individuals. The process of constructing an atlas involves the topics of segmentation, which finds regions of interest in the data (e.g., an organ, a structure), and registration, which finds correspondences between regions of interest. Current frameworks may require tedious and hardly reproducible user interactions, and are additionally limited by their computational schemes, which rely on slow iterative deformations of images, prone to local minima. Image registration is, therefore, not optimal with large deformations. Such limitations indicate the need to research new approaches for atlas construction. The research questions are consequently addressing the problems of automating current frameworks and capturing global and complex deformations between anatomical structures, in particular between human hearts and brains. More precisely, the methodology adopted in the thesis led to three specific research objectives. Briefly, the first step aims at developing a new automated framework for atlas construction in order to build the first human atlas of the cardiac fiber architecture. The second step intends to explore a new approach based on spectral correspondence, named FOCUSR, in order to precisely capture large shape variability. The third step leads, finally, to a fundamentally new approach for image registration with large deformations, named the Spectral Demons algorithm. The first objective aims more specifically at constructing a statistical atlas of the cardiac fiber architecture from a unique human dataset of 10 ex vivo hearts. The developed framework made two technical, and one medical, contributions, that are the improvement of the segmentation of cardiac structures, the automation of the shape averaging process, and more importantly, the first human study on the variability of the cardiac fiber architecture. To summarize the main finding, the fiber orientations in human hearts has been found to vary with about +- 12 degrees, the range of the helix angle spans from -41 degrees (+- 26 degrees) on the epicardium to +66 degrees (+- 15 degrees) on the endocardium, while, the range of the transverse angle spans from +9 degrees (+- 12 degrees) to +34 degrees (+- 29 degrees) across the myocardial wall. These findings are significant in cardiology since the fiber architecture plays a key role in cardiac mechanical functions and in electrophysiology. The second objective intends to capture large shape variability between complex anatomical structures, in particular between cerebral cortices due to their highly convoluted surfaces and their high anatomical and functional variability across individuals. The new method for surface correspondence, named FOCUSR, exploits spectral representations since matching is easier in the spectral domain rather than in the conventional Euclidean space. In its simplest form, FOCUSR improves current spectral approaches by refining spectral representations with a nonrigid alignment; however, its full power is demonstrated when using additional features during matching. For instance, the results showed that sulcal depth and cortical curvature improve significantly the accuracy of cortical surface matching. Finally, the third objective is to improve image registration for organs with a high inter-subject variability or undergoing very large deformations, such as the heart. The new approach brought by the spectral matching technique allows the improvement of conventional image registration methods. Indeed, spectral representations, which capture global geometric similarities and large deformations between different shapes, may be used to overcome a major limitation of current registration methods, which are in fact guided by local forces and restrained to small deformations. The new algorithm, named Spectral Demons, can capture very large and complex deformations between images, and can additionally be adapted to other approaches, such as in a groupwise configuration. This results in a complete framework for atlas construction, named Groupwise Spectral Demons, where the average shape is computed during the registration process rather than in sequential steps. The achievements of these three specific objectives permitted advances in the state-of-the-art of spectral matching methods and of atlas construction, enabling the registration of organs with significant shape variability. Overall, the investigation of these different strategies provides new contributions on how to find and exploit global descriptions of images and surfaces. From a global perspective, these objectives establish a link between: a) the first set of tools, that highlights the challenges in registering images with very large deformations, b) the second set of tools, that captures very large deformations between surfaces but are not applicable to images, and c) the third set of tools, that comes back on processing images and allows a natural construction of atlases from images with very large deformations. There are, however, several general remaining limitations, for instance, partial data (truncated or occluded) is currently not supported by the new tools, or also, the strategy for computing and using spectral representations still leaves room for improvement. This thesis gives new perspectives in cardiac and neuroimaging, yet at the same time, the new tools remain general enough for virtually any application that uses surface or image registration. It is recommended to research additional links with graph-based segmentation methods, which may lead to a complete framework for atlas construction where segmentation, registration and shape averaging are all interlinked. It is also recommended to pursue research on building better cardiac electromechanical models from the findings of this thesis. Nevertheless, the new tools provide new grounds for research and application of shape normalization, which may potentially impact diagnostic, as well as planning and performance of medical interventions
    corecore