8,734 research outputs found

    Real-time Auto Tuning of a Closed Loop Second Order System with Internal Time Delay Using Pseudo Random Binary Sequences

    Get PDF
    This research yielded a real-time auto tuning algorithm to adaptively tune a proportional integral and derivative (PID) controller for a first or second-order system with internal time-delay. The method uses a 15-bit pseudo-random binary sequence as an input to obtain the closed-loop system impulse response while the system is operating. Time-delay is assessed by analysis of the estimated closed-loop impulse response and is used in the system model for closed-loop pole assessment. The fast fourier transform of the estimated impulse response produces an estimate of the frequency response data, and a non-linear regression optimization technique, utilizing MATLAB, identifies the closed-loop system transfer function based on assumed form. Closed-loop poles are then placed, based on an iterative tuning study, automatically by the algorithm to achieve a user-defined overshoot and ensure stability of the system with time-delay. This is accomplished by adjusting the PID compensator gains. The algorithm is capable of tuning the system from an initially stable set of PID gains to within 5% of the user-defined overshoot. The research demonstrates that the auto tuning method is feasible for time-delays on the order of the plant time constant but is extendable to larger time-delays

    Control techniques for power system stabilisation

    Get PDF
    The conventional PSS was first proposed earlier based on a linear model of the power system to damp the low frequency oscillations in the system. But they are designed to be operated under fixed parameters derived from the system linearized model. Due to large interconnection of power system to meet the load demand brings in deviations of steady-state and non-linearity to power system. The main problem is that PSS includes the locally measured quantities only neglecting the effect of nearby generators. This is the reason for the advent of Wide area monitoring for strong coupling between the local modes and the inter-area modes which would make the tuning of local PSSs for damping all modes nearly impossible when there is no supervisory level controller. Wide area control addresses these problems by proposing smart topology changes and control actions. Dynamic islanding and fast load shedding are schemes available to maintain as much as possible healthy transmission system. It is found that if remote signals from one or more distant locations of the power system can be applied to local controller design, system dynamic performance can be enhanced. In order to attain these goals, it is desirable to systematically build a robust wide area controller model within an autonomous system framework

    Algebraic geometric methods for the stabilizability and reliability of multivariable and of multimode systems

    Get PDF
    The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined

    A New Tuning Method of Multi-Resonant Current Controllers for Grid-Connected Voltage Source Converters

    Get PDF

    Modulation and Control Techniques for Performance Improvement of Micro Grid Tie Inverters

    Get PDF
    The concept of microgrids is a new building block of smart grid that acts as a single controllable entity which allows reliable interconnection of distributed energy resources and loads and provides alternative way of their integration into power system. Due to its specifics, microgrids require different control strategies and dynamics of regulation as compared to ones used in conventional utility grids. All types of power converters used in microgrid share commonalities which potentially affect high frequency modes of microgrid in same manner. There are numerous unique design requirements imposed on microgrid tie inverters, which are dictated by the nature of the microgrid system and bring major challenges that are reviewed and further analyzed in this work. This work introduces, performs a detailed study on, and implements nonconventional control and modulation techniques leading to performance improvement of microgrid tie inverters in respect to aforementioned challenges

    Development of the L-1011 four-dimensional flight management system

    Get PDF
    The development of 4-D guidance and control algorithms for the L-1011 Flight Management System is described. Four-D Flight Management is a concept by which an aircraft's flight is optimized along the 3-D path within the constraints of today's ATC environment, while its arrival time is controlled to fit into the air traffic flow without incurring or causing delays. The methods developed herein were designed to be compatible with the time-based en route metering techniques that were recently developed by the Dallas/Fort Worth and Denver Air Route Traffic Control Centers. The ensuing development of the 4-D guidance algorithms, the necessary control laws and the operational procedures are discussed. Results of computer simulation evaluation of the guidance algorithms and control laws are presented, along with a description of the software development procedures utilized

    Computer simulation of a pilot in V/STOL aircraft control loops

    Get PDF
    The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable

    Digital flight control research

    Get PDF
    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator

    Advances in the modelling of motorcycle dynamics

    No full text
    Published versio
    corecore