110,120 research outputs found

    Conditional Spectrum Computation Incorporating Multiple Causal Earthquakes and Groundā€Motion Prediction Models

    Get PDF
    The Conditional Spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions as well as the epistemic uncertainties in ground motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western U.S. (WUS). The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the U.S. using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper

    Effect of habitat degradation on competition, carrying capacity, and species assemblage stability

    Get PDF
    In human-impacted rivers, nutrient pollution has the potential to disrupt biodiversity organisation and ecosystem functioning, prompting calls for effective monitoring and management. Pollutants, together with natural variations, can modify the isotopic signature of aquatic organisms. Accordingly, we explored the potential of isotopic variations as an indicator of drainage basin influences on river food webs. We assessed stable N and C isotopes within six food webs along a river affected by multiple pollution sources. CORINE land cover maps and Digital Elevation Models (DEMs) were also applied to understand the impact on surface waters of anthropogenic pressures affecting the catchment. N isotopic signatures of taxa fell in association with ammonium inputs from agriculture, indicating that nitrogen pollution was related to synthetic fertilizers. Isotopic variations were consistent across trophic levels, highlighting site-specific communities and identifying taxa exposed to pollutants. This allowed us to locate point sources of disturbance, suggesting that food web structure plays a key role in pollutant compartmentalisation along the river. Thematic maps and DEMs helped understand how the anthropogenic impact on river biota is mediated by hydro-geomorphology. Thus, the integration of site-scale analyses of stable isotopes and land use represents a promising research pathway for explorative nutrient pollution monitoring in human-impacted rivers

    Collaborative recommendations with content-based filters for cultural activities via a scalable event distribution platform

    Get PDF
    Nowadays, most people have limited leisure time and the offer of (cultural) activities to spend this time is enormous. Consequently, picking the most appropriate events becomes increasingly difficult for end-users. This complexity of choice reinforces the necessity of filtering systems that assist users in finding and selecting relevant events. Whereas traditional filtering tools enable e.g. the use of keyword-based or filtered searches, innovative recommender systems draw on user ratings, preferences, and metadata describing the events. Existing collaborative recommendation techniques, developed for suggesting web-shop products or audio-visual content, have difficulties with sparse rating data and can not cope at all with event-specific restrictions like availability, time, and location. Moreover, aggregating, enriching, and distributing these events are additional requisites for an optimal communication channel. In this paper, we propose a highly-scalable event recommendation platform which considers event-specific characteristics. Personal suggestions are generated by an advanced collaborative filtering algorithm, which is more robust on sparse data by extending user profiles with presumable future consumptions. The events, which are described using an RDF/OWL representation of the EventsML-G2 standard, are categorized and enriched via smart indexing and open linked data sets. This metadata model enables additional content-based filters, which consider event-specific characteristics, on the recommendation list. The integration of these different functionalities is realized by a scalable and extendable bus architecture. Finally, focus group conversations were organized with external experts, cultural mediators, and potential end-users to evaluate the event distribution platform and investigate the possible added value of recommendations for cultural participation

    MODBASE, a database of annotated comparative protein structure models and associated resources.

    Get PDF
    MODBASE (http://salilab.org/modbase) is a database of annotated comparative protein structure models. The models are calculated by MODPIPE, an automated modeling pipeline that relies primarily on MODELLER for fold assignment, sequence-structure alignment, model building and model assessment (http:/salilab.org/modeller). MODBASE currently contains 5,152,695 reliable models for domains in 1,593,209 unique protein sequences; only models based on statistically significant alignments and/or models assessed to have the correct fold are included. MODBASE also allows users to calculate comparative models on demand, through an interface to the MODWEB modeling server (http://salilab.org/modweb). Other resources integrated with MODBASE include databases of multiple protein structure alignments (DBAli), structurally defined ligand binding sites (LIGBASE), predicted ligand binding sites (AnnoLyze), structurally defined binary domain interfaces (PIBASE) and annotated single nucleotide polymorphisms and somatic mutations found in human proteins (LS-SNP, LS-Mut). MODBASE models are also available through the Protein Model Portal (http://www.proteinmodelportal.org/)
    • ā€¦
    corecore