24,902 research outputs found

    KRYLOV SUBSPACE METHODS FOR SOLVING LARGE LYAPUNOV EQUATIONS

    Get PDF
    Published versio

    Polynomially filtered exact diagonalization approach to many-body localization

    Full text link
    Polynomially filtered exact diagonalization method (POLFED) for large sparse matrices is introduced. The algorithm finds an optimal basis of a subspace spanned by eigenvectors with eigenvalues close to a specified energy target by a spectral transformation using a high order polynomial of the matrix. The memory requirements scale better with system size than in the state-of-the-art shift-invert approach. The potential of POLFED is demonstrated examining many-body localization transition in 1D interacting quantum spin-1/2 chains. We investigate the disorder strength and system size scaling of Thouless time. System size dependence of bipartite entanglement entropy and of the gap ratio highlights the importance of finite-size effects in the system. We discuss possible scenarios regarding the many-body localization transition obtaining estimates for the critical disorder strength.Comment: 4+5 pages, version accepted in Physical Review Letters, comments welcom

    Diffusion in sparse networks: linear to semi-linear crossover

    Full text link
    We consider random networks whose dynamics is described by a rate equation, with transition rates wnmw_{nm} that form a symmetric matrix. The long time evolution of the system is characterized by a diffusion coefficient DD. In one dimension it is well known that DD can display an abrupt percolation-like transition from diffusion (D>0D>0) to sub-diffusion (D=0). A question arises whether such a transition happens in higher dimensions. Numerically DD can be evaluated using a resistor network calculation, or optionally it can be deduced from the spectral properties of the system. Contrary to a recent expectation that is based on a renormalization-group analysis, we deduce that DD is finite; suggest an "effective-range-hopping" procedure to evaluate it; and contrast the results with the linear estimate. The same approach is useful for the analysis of networks that are described by quasi-one-dimensional sparse banded matrices.Comment: 13 pages, 4 figures, proofed as publishe
    corecore