KRYLOV SUBSPACE METHODS FOR SOLVING LARGE LYAPUNOV EQUATIONS*

IMAD M. JAIMOUKHA ${ }^{\dagger}$ AND EBRAHIM M. KASENALLY ${ }^{\dagger}$

Abstract

This paper considers several methods for calculating low-rank approximate solutions to large-scale Lyapunov equations of the form $A P+P A^{\prime}+B B^{\prime}=0$. The interest in this problem stems from model reduction where the task is to approximate high-dimensional models by ones of lower order. The two recently developed Krylov subspace methods exploited in this paper are the Arnoldi method [Saad, Math. Comput., 37 (1981), pp. 105-126] and the Generalised Minimum Residual method (GMRES) [Saad and Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869]. Exact expressions for the approximation errors incurred are derived in both cases. The numerical solution of the low-dimensional linear matrix equation arising from the GMRES method is discussed and an algorithm for its solution is proposed. Low rank solutions of discrete time Lyapunov equations and continuous time algebraic Riccati equations are also considered. Throughout this paper, the authors tackle problems in which B has more than one column with the use of block Krylov schemes.

Key words. Arnoldi, GMRES, iterative methods, model reduction, Krylov subspace methods, Lyapunov matrix equation, large-scale systems

AMS subject classifications. $65 \mathrm{~F} 10,65 \mathrm{~F} 15,65 \mathrm{~F} 30,65 \mathrm{~F} 25$

1. Introduction. In this paper, we focus on low-rank approximate solutions of large Lyapunov matrix equations

$$
\begin{equation*}
A P+P A^{\prime}+B B^{\prime}=0, \quad A, P \in \mathcal{R}^{N \times N}, \quad \text { and } \quad B \in \mathcal{R}^{N \times p}, \tag{1}
\end{equation*}
$$

in which N is large (typically greater than 200) and $p \ll N$. Lyapunov equations play an important role in control and communications theory. They arise naturally in \mathcal{H}^{∞} optimal control theory [11], system balancing [20], [22], stability analysis of dynamical systems [21], and model reduction of linear time invariant systems [22], [29].

The need for model reduction arises in many areas of engineering, where highorder mathematical models are used to describe complex dynamical behaviour. These occur whenever models are described by partial differential equations that culminate in large, linear finite element models. For practical reasons, it is desirable to replace these high-order models by low-order approximations; for example, in control system applications, high-order models may result in high-order controllers and the subsequent implementation of these controllers is cumbersome and expensive. Consider a stable linear state-space model of the form

$$
\begin{align*}
\dot{x}(t) & =A x(t)+B u(t), \tag{2}\\
y(t) & =C x(t)+D u(t), \tag{3}
\end{align*}
$$

in which $x(t)$ is the state vector of dimension $N, u(t)$ is a control vector of length p, and $y(t)$ is the output vector of length q. The matrices A, B, C, and D are real with their dimensions fixed by those of x, u, and y. The associated transfer function is given by $G(s)=C(s I-A)^{-1} B+D$. The task of any model reduction algorithm is

[^0]to find an approximate stable model
\[

$$
\begin{align*}
\dot{x}_{k}(t) & =A_{k} x_{k}(t)+B_{k} u(t) \tag{4}\\
y_{k}(t) & =C_{k} x_{k}(t)+D_{k} u(t) \tag{5}
\end{align*}
$$
\]

in which $x_{k}(t) \in \mathcal{R}^{k}$, with $k \ll N$ and the low-order transfer function is given by $G_{k}(s)=C_{k}\left(s I-A_{k}\right)^{-1} B_{k}+D_{k}$. Well-established model reduction methods such as optimal Hankel norm [10] and balanced truncation [22], [29] begin by solving the linear matrix equations

$$
\begin{equation*}
A P+P A^{\prime}+B B^{\prime}=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{\prime} Q+Q A+C^{\prime} C=0 \tag{7}
\end{equation*}
$$

which have unique solutions if and only if $\lambda_{i}(A)+\bar{\lambda}_{j}(A) \neq 0$ for all i, j. The requisite for P and Q stems from the easily computable \mathcal{L}^{∞} error bound [10]

$$
\begin{equation*}
\left\|G(s)-G_{k}(s)\right\|_{\infty} \leq 2 \sum_{k+1}^{N} \sigma_{i}(P Q) \tag{8}
\end{equation*}
$$

where the σ_{i} 's are the Hankel singular values of $G(s)$ defined as $\sigma_{i}=\lambda_{i}^{1 / 2}(P Q)$ and arranged in decreasing order of magnitude.

The low-rank approximate solution to large Lyapunov equations has received only modest attention; the references [1], [15], [16], and [25] are to the authors' knowledge the only available literature on the topic. In the case of low-dimensional problems (for $N \leq 50$) there are numerous solution techniques based on iterative approximation methods, numerical integration, Kronecker matrix products, Jordan decompositions, and eigenvalue decompositions. Of these various procedures, the Bartels-Stewart algorithm [3] is probably the most efficient and widely used. The Bartels-Stewart algorithm transforms A into a real Schur form $H=U^{\prime} A U$ in which U is orthogonal and H is quasi upper-triangular. This gives

$$
\begin{equation*}
H \tilde{P}+\tilde{P} H^{\prime}+U^{\prime} B B^{\prime} U=0 \tag{9}
\end{equation*}
$$

in which $\tilde{P}=U^{\prime} P U$, and this equation is easily solved by back substitution. Unfortunately, none of these methods are suitable for solving large Lyapunov equations, since the computation time and storage requirements are prohibitive. The Schur decompositions of sparse matrices are dense in general as are their orthogonal transformation matrices. Furthermore, their respective solutions P and \tilde{P} in (1) and (9) will generally be dense even when A is diagonal. To remedy this situation, this paper presents algorithms that compute approximate solutions to (1) for large A and low rank B. Our approach is based on the work of Saad [25], which uses classical Krylov subspace techniques.

Krylov subspace techniques are a class of iterative methods that are playing an increasing role in the solution of numerous scientific problems. Originally proposed for the solution of large eigenvalue problems, they have successfully found their way into a variety of applications in the areas of control theory, computational chemistry, and physics. Much of the theoretical research on the applications of Krylov subspace techniques relates to the solution of linear systems of equations $A x=b[8],[23]$,
[28] with recent extensions to nonlinear systems [7] employing hybrid schemes and ordinary differential equations [6], [9]; a good survey of recent research activity in this area with an emphasis on supercomputers may be found in [26]. In [25] Saad considers the low-rank approximate solutions to (1) in which $p=1$; this paper extends his work to the general case via the use of block schemes and gives an expression for the corresponding residual error. We subsequently address the problem of computing a low rank approximate solution to (1) which meets an optimality condition. The GMRES method we consider minimises the Frobenius norm of the error for which we also give an exact expression.

Recently, several researchers have proposed alternative iterative methods for the approximate solution to large Sylvester equations of the form $A X+X B=-C$. In [31], the Alternating-Direction-Implicit (ADI) iteration is applied to refine an initial approximate solution. The block Successive Overrelaxation iterative method may also be used to iteratively refine an initial approximate solution; this idea was first proposed by Starke and Niethammer [30]. Both the ADI and SOR methods do not necessarily yield low-rank approximate solutions; consequently, storing and manipulating the solution may be expensive.

In [18], Hu and Reichel consider low-rank approximate solutions to Sylvester equations. Their technique is similar to ours and was developed independently. Their Galerkin method produces a low-dimensional Sylvester equation whose solution is used to build a low-rank approximation, while the GMRES method yields a large system of linear equations via the use of Kronecker tensors. The main difference between [18] and the results presented in this paper is that our computations are performed in the low dimension and expressions for the residual errors are provided.

Section 2 describes the type of approximations employed and studies the Arnoldi and GMRES methods, deriving exact expressions for the errors incurred in both schemes. Section 3 considers the practical problem of solving the linear matrix equation arising from the GMRES method. Section 4 employs the solution techniques presented in $\S 2$ to give low-rank solutions and residual error expressions for the discrete Lyapunov matrix equation and for the continuous time algebraic Riccati equation. Two illustrative examples in $\S 5$ show how the Lyapunov solvers behave in practice, and finally, some concluding remarks are given in §6.
2. Krylov subspace techniques. The purpose of this section is to establish the type of low-rank approximation used throughout this paper. Based on this choice, we describe the Arnoldi and GMRES methods and give a full error analysis for each case.

In practice, solutions to large Lyapunov equations (1) frequently admit good lowrank approximations, in addition to which one is generally interested in computing only the dominant eigenspace of the solution P^{*}, rather than P^{*} itself, since the dominant eigenspace of P^{*} is known to be associated with the dominant modes of the system described by (2) and (3) [20]. Ideally, we would therefore like to compute a rank m approximation P_{m}, where $m \ll N$ such that $\left\|P^{*}-P_{m}\right\|_{F}$ is minimised. Throughout this paper we shall make use of the Frobenius norm defined as $\|Z\|_{F}=$ $\sqrt{\operatorname{tr}\left(Z Z^{\prime}\right)}$ in which Z^{\prime} denotes the transpose of Z.

Consider the Schur decomposition of P^{*} given by $P^{*}=U \Sigma U^{\prime}$ in which $U \in$ $\mathcal{R}^{N \times N}$ is an orthogonal matrix and $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}\right\}$ is a matrix of eigenvalues ordered such that $\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots\left|\sigma_{N}\right| \geq 0$. Then the optimal rank m Frobenius norm
approximation of P^{*} is given by

$$
P_{m}:=U\left[\begin{array}{cc}
\Sigma_{m} & 0 \tag{10}\\
0 & 0
\end{array}\right] U^{\prime}=U_{m} \Sigma_{m} U_{m}^{\prime}
$$

where $\Sigma_{m}=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right\}$ (i.e., the first m diagonal elements of Σ) and $U_{m} \in$ $\mathcal{R}^{N \times m}$ is the first m columns of U. In [25] a low-rank approximation is computed by choosing an orthogonal matrix $V_{m} \in \mathcal{R}^{N \times m}$ and calculating the exact solution X_{m} to the reduced-order Lyapunov equation

$$
\begin{equation*}
\left(V_{m}^{\prime} A V_{m}\right) X_{m}+X_{m}\left(V_{m}^{\prime} A^{\prime} V_{m}\right)+V_{m}^{\prime} B B^{\prime} V_{m}=0 \tag{11}
\end{equation*}
$$

The estimate of P^{*} is then given by $P_{m}=V_{m} X_{m} V_{m}^{\prime}$. Compared with the optimal approximation given in (10), it is apparent that to compute a good estimate of P^{*}, V_{m} must be an accurate approximation of U_{m}, or in other words, the m most dominant eigenvectors of P^{*}. Unfortunately, minimising $\left\|P^{*}-P_{m}\right\|_{F}$ is intractable when P^{*} is unknown.

We will therefore turn our attention to the problem of selecting V_{m} and X_{m}. Let K_{m} be the $m p$-dimensional Krylov space defined as

$$
\begin{equation*}
K_{m}=\operatorname{span}\left\{\left[B A B A^{2} B \cdots A^{m-1} B\right]\right\} \tag{12}
\end{equation*}
$$

then following [25], we will select V_{m} to be an orthogonal basis of K_{m}. Throughout the remainder of this paper, we will exploit approximations to the solution P^{*} which have the form

$$
\begin{equation*}
P_{m}=V_{m} X_{m} V_{m}^{\prime} \tag{13}
\end{equation*}
$$

where $X_{m} \in \mathcal{R}^{m p \times m p}$ is an arbitrary symmetric matrix. The key point here is that even though $P_{m} \in \mathcal{R}^{N \times N}$, it may be efficiently stored as the product of smaller matrices $V_{m} \in \mathcal{R}^{N \times m p}$ and $X_{m} \in \mathcal{R}^{m p \times m p}$. We observe that P_{m} is symmetric for symmetric X_{m} and $\operatorname{rank}\left(P_{m}\right)=\operatorname{rank}\left(X_{m}\right) \leq m p$.

The remainder of this section is devoted to the appropriate selection of a symmetric X_{m}. We begin by defining the residual error function associated with a particular choice of X_{m} as

$$
\begin{equation*}
R_{m}\left(X_{m}\right):=A\left(V_{m} X_{m} V_{m}^{\prime}\right)+\left(V_{m} X_{m} V_{m}^{\prime}\right) A^{\prime}+B B^{\prime} \tag{14}
\end{equation*}
$$

The solution techniques presented in this paper are based on seeking a symmetric X_{m} so as to give $R_{m}\left(X_{m}\right)$ desirable properties. Section 2.1 addresses the problem of constructing X_{m} such that $R_{m}\left(X_{m}\right)$ has an orthogonality property with respect to K_{m} and gives a computable expression for $\left\|R_{m}\left(X_{m}\right)\right\|_{F}$. Section 2.2 deals with finding a symmetric X_{m} which minimises $\left\|R_{m}\left(X_{m}\right)\right\|_{F}$ for which a simple expression is also derived.
2.1. The Arnoldi method. Next we use the well established Arnoldi algorithm [32] to calculate an orthonormal basis V_{m} for the Krylov subspace K_{m}. The basic outline of a block Arnoldi process is given next.

Arnoldi process.

- Compute $B=Q_{1} R_{1}$ and set $p_{1}:=$ number of columns of Q_{1} ($Q R$ factorisation).
- Do $j=1, \ldots, m$.
(a) Set $V_{j}=\left[\begin{array}{lll}Q_{1} & Q_{2} \cdots Q_{j}\end{array}\right]$.
(b) Compute $\left[\begin{array}{c}A_{1 j} \\ A_{2 j} \\ \vdots \\ A_{j j}\end{array}\right]=V_{j}^{\prime} A Q_{j}$.
(c) $Q_{j+1} A_{j+1, j}=A Q_{j}-\sum_{k=1}^{j} Q_{k} A_{k j}$ ($Q R$ factorisation) and $p_{j+1}:=$ number of columns of Q_{j+1}.
End Do.
In practice, it is advisable to compute the $Q R$ factorisations of the Arnoldi process via the Gram-Schmidt (GS) or modified Gram-Schmidt (MGS) orthogonalisation processes. A brief description of such a factorisation process is given next; column partition B as $B=\left[b_{1}, b_{2}, \ldots, b_{p}\right]$; then

Step 1:	$n_{q_{1}}=b_{1}$,	$q_{1}=n_{q_{1}} /\left\\|n_{q_{1}}\right\\|_{2}$,
Step 2:	$n_{q_{2}}=b_{2}-\left(q_{1}^{\prime} b_{2}\right) q_{1}$,	$q_{2}=n_{q_{2}} /\left\\|n_{q_{2}}\right\\|_{2}$,
\vdots	\vdots	\vdots
Step k:	$n_{q_{k}}=b_{k}-\sum_{j=1}^{k-1}\left(q_{j}^{\prime} b_{k}\right) q_{j}$,	$q_{k}=n_{q_{k}} /\left\\|n_{q_{k}}\right\\|_{2} ;$

construct the orthogonal matrix $Q_{1}:=\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{p}\end{array}\right]$, and finally, define the upper triangular matrix R_{1}, where

$$
R_{1}=\left[\begin{array}{ccccc}
\left\|n_{q_{1}}\right\|_{2} & q_{1}^{\prime} b_{2} & q_{1}^{\prime} b_{3} & \cdots & q_{1}^{\prime} b_{p} \tag{15}\\
0 & \left\|n_{q_{2}}\right\|_{2} & q_{2}^{\prime} b_{3} & \cdots & \vdots \\
0 & 0 & \left\|n_{q_{3}}\right\|_{2} & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \left\|n_{q_{p}}\right\|_{2}
\end{array}\right]
$$

Poor numerical properties of the GS method make it necessary to occasionally employ the MGS approach, which is a rearrangement of the calculations outlined above [12]. The main point we wish to highlight is that to effect the $Q R$ factorisation of B in this setting, one only needs to construct an orthogonal basis Q_{1} of B such that $Q_{1} \in \mathcal{R}^{N \times p}$ and an upper-triangular matrix $R \in \mathcal{R}^{p \times p}$.

In the case that B does not have full column rank, GS and MGS do not generally yield an orthogonal basis for B. The $Q R$ factorisation is then given by

$$
B \Pi=\left[\begin{array}{ll}
\hat{Q}_{1} & \hat{Q}_{2}
\end{array}\right]\left[\begin{array}{cc}
\hat{R}_{11} & \hat{R}_{12} \\
0 & 0
\end{array}\right]
$$

in which \hat{R}_{11} is upper-triangular and Π is a permutation matrix. In such a situation, we set $Q_{1}:=\hat{Q}_{1}$ and $R_{1}:=\left[\hat{R}_{11} \hat{R}_{12}\right] \Pi^{\prime}$. Finally, $p_{1}:=\operatorname{rank}\left(Q_{1}\right)=\operatorname{rank}(B)$, and hence V_{1} has only p_{1} columns. Similarly, the $Q R$ factorisation of $A Q_{j}-\sum_{k=1}^{j} Q_{k} A_{k j}$ in the main loop of the Arnoldi process is given by

$$
\left[\hat{Q}_{j 1} \hat{Q}_{j 2}\right]\left[\begin{array}{cc}
\hat{R}_{j 1} & \hat{R}_{j 2} \tag{16}\\
0 & 0
\end{array}\right]=\left(A Q_{j}-\sum_{k=1}^{j} Q_{k} A_{k j}\right) \Pi
$$

in which we set

$$
\begin{equation*}
Q_{j+1}:=\hat{Q}_{j 1} \quad \text { and } \quad A_{j+1, j}:=\left[\hat{R}_{j 1} \hat{R}_{j 2}\right] \Pi^{\prime} \tag{17}
\end{equation*}
$$

We observe that the upper-triangular structure of $\hat{R}_{j 1}$ is lost since Π^{\prime} permutes the columns of $\left[\hat{R}_{j 1} \hat{R}_{j 2}\right.$]. The matrices R_{1} and A_{j+1}, j are nonsquare and will have row rank of p_{1} and p_{j+1} respectively. We refer to any rank drop in B or $A Q_{j}-\sum_{k=1}^{j} Q_{k} A_{k j}$ as a curable (or partial) breakdown since it does not adversely affect the Arnoldi process if tackled in the manner just described. For the most part, we will assume that this type of breakdown does not occur; consequently, m steps of the Arnoldi process generate $V_{m} \in \mathcal{R}^{N \times m p}$.

By construction, the algorithm above produces an orthonormal basis $V_{m}=\left[Q_{1} Q_{2}\right.$ $\left.\cdots Q_{m}\right]$ for the Krylov subspace K_{m}. Defining the $m p \times m p$ block upper-Hessenberg matrix A_{m} as

$$
A_{m}=\left[\begin{array}{ccccc}
A_{11} & A_{12} & \cdots & \cdots & A_{1 m} \tag{18}\\
A_{21} & A_{22} & \cdots & \cdots & \vdots \\
0 & A_{32} & A_{33} & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & A_{m, m-1} & A_{m m}
\end{array}\right]
$$

it is easy to verify that

$$
\begin{equation*}
A V_{m}=V_{m} A_{m}+Q_{m+1} A_{m+1, m} E_{m}^{\prime} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{m}=V_{m}^{\prime} A V_{m} \tag{20}
\end{equation*}
$$

where E_{m} is a matrix of the last p columns of the $m p$ identity matrix.
Remark 2.1. Boley and Golub [4] give a similar treatment of the block Arnoldi process; however, their algorithm computes an orthogonal basis of the entire controllable subspace (i.e., the Krylov space $K(A, B)$), the construction of A_{m} is carried out using (20) rather than by the Arnoldi process and finally, they do not consider (19). In our algorithm, we use their implementation of (16) for the updates given in (17). This ensures that (19) is satisfied.

If we set $B_{m}:=\left[\begin{array}{ll}R_{1}^{\prime} & 0_{p \times l}\end{array}\right]^{\prime}$ where $l=p(m-1)$, then $B=V_{m} B_{m}$, the residual error (14) is then given by

$$
\begin{equation*}
R_{m}\left(X_{m}\right):=A\left(V_{m} X_{m} V_{m}^{\prime}\right)+\left(V_{m} X_{m} V_{m}^{\prime}\right) A^{\prime}+V_{m} B_{m} B_{m}^{\prime} V_{m}^{\prime} \tag{21}
\end{equation*}
$$

Substituting (19) into (21) gives

$$
R_{m}\left(X_{m}\right)=V_{m+1}\left[\begin{array}{cc}
A_{m} X_{m}+X_{m} A_{m}^{\prime}+B_{m} B_{m}^{\prime} & X_{m} E_{m} A_{m+1, m}^{\prime} \tag{22}\\
A_{m+1, m} E_{m}^{\prime} X_{m} & 0
\end{array}\right] V_{m+1}^{\prime}
$$

where $V_{m+1}=\left[V_{m} Q_{m+1}\right]$. The Arnoldi-Lyapunov solver considered in this subsection seeks a symmetric X_{m} by imposing the condition that the residual error $R_{m}\left(X_{m}\right)$ has an orthogonality property with respect to K_{m}; we can state the problem we wish to address as follows.

Problem 2.1. Find an approximate solution $P_{m}:=V_{m} X_{m} V_{m}^{\prime}$ that satisfies the Galerkin type condition $V_{m}^{\prime} R_{m}\left(X_{m}\right) V_{m}=0$.

The following theorem is the main result of this subsection and gives the solution to Problem 2.1.

Theorem 2.1. Suppose that m steps of the Arnoldi process have been taken and that the residual error is defined by (21); then if $\lambda_{i}\left(A_{m}\right)+\bar{\lambda}_{j}\left(A_{m}\right) \neq 0$, for all i, j,
(a) $V_{m}^{\prime} R_{m}\left(X_{m}\right) V_{m}=0$ if and only if $X_{m}=X_{m}^{A}$, where X_{m}^{A} satisfies

$$
\begin{equation*}
A_{m} X_{m}^{A}+X_{m}^{A} A_{m}^{\prime}+B_{m} B_{m}^{\prime}=0 \tag{23}
\end{equation*}
$$

(b) If the conditions of (a) are met, then the residual error norm is given by

$$
\begin{equation*}
\left\|R_{m}^{A}\right\|_{F}:=\left\|R_{m}\left(X_{m}^{A}\right)\right\|_{F}=\sqrt{2}\left\|A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\right\|_{F} \tag{24}
\end{equation*}
$$

Proof. Pre- and post-multiplying (22) by V_{m}^{\prime} and V_{m}, respectively, gives

$$
\begin{aligned}
V_{m}^{\prime} R_{m}\left(X_{m}\right) V_{m} & =V_{m}^{\prime} V_{m+1}\left[\begin{array}{cc}
A_{m} X_{m}+X_{m} A_{m}^{\prime}+B_{m} B_{m}^{\prime} & X_{m} E_{m} A_{m+1, m}^{\prime} \\
A_{m+1, m} E_{m}^{\prime} X_{m} & 0
\end{array}\right] V_{m+1}^{\prime} V_{m} \\
& =\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{cc}
A_{m} X_{m}+X_{m} A_{m}^{\prime}+B_{m} B_{m}^{\prime} & X_{m} E_{m} A_{m+1, m}^{\prime} \\
A_{m+1, m} E_{m}^{\prime} X_{m} & 0
\end{array}\right]\left[\begin{array}{l}
I \\
0
\end{array}\right] \\
& =A_{m} X_{m}+X_{m} A_{m}^{\prime}+B_{m} B_{m}^{\prime},
\end{aligned}
$$

since $V_{m+1}=\left[V_{m} Q_{m+1}\right]$ is part of an orthogonal matrix. The result follows immediately, establishing the proof of part (a). Substituting (23) into the (1,1) block of (22) gives

$$
\begin{align*}
\text { (25) } R_{m}^{A} & :=R_{m}\left(X_{m}^{A}\right)=V_{m+1}\left[\begin{array}{cc}
0 & X_{m}^{A} E_{m} A_{m+1, m}^{\prime} \\
A_{m+1, m} E_{m}^{\prime} X_{m}^{A} & 0
\end{array}\right] V_{m+1}^{\prime}, \tag{25}\\
\left\|R_{m}^{A}\right\|_{F} & =\sqrt{\operatorname{tr}\left(X_{m}^{A} E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\right)+\operatorname{tr}\left(A_{m+1, m} E_{m}^{\prime} X_{m}^{A} X_{m}^{A} E_{m} A_{m+1, m}^{\prime}\right)} \\
& =\sqrt{2} \sqrt{\operatorname{tr}\left(X_{m}^{A} E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\right)} \\
\text { (26) } & =\sqrt{2}\left\|A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\right\|_{F}, \tag{26}
\end{align*}
$$

since V_{m+1} is part of an orthogonal matrix that completes the proof.
An implication of the above result is that as m is increased, the residue is confined to a progressively smaller and smaller subspace of $\mathcal{R}^{N \times N}$. This, however, does not imply that the Arnoldi will produce a sequence of nonincreasing residual error norms. The residual error norm in (24) provides a useful stopping criterion in a practical implementation of the algorithm; it allows one to economically evaluate the error norm and gauge the quality of the low rank approximation. The key points here are the following. Firstly, (23) is a Lyapunov equation of dimension $m p$, which can be solved accurately using the Bartels-Stewart algorithm [3]; secondly, P_{m} may be efficiently stored as the product of low-order matrices; and thirdly, the residual error norm does not require the computation of the approximate solution P_{m} at each step, instead (24) is computed via low-dimensional matrix products. Finally, we mention that $\operatorname{Re}\left(\lambda_{i}\left(A_{m}\right)\right)<0$ is guaranteed whenever $A+A^{\prime}<0$. The complete algorithm may now be summarised in the following procedure.

Arnoldi-Lyapunov solver.

- Start: Specify a tolerance $\epsilon>0$, set an integer parameter m_{1}, and, set $k=0$ and $m:=m_{1}$.
- The Arnoldi process:

1. Compute $B=Q_{1} R_{1}$ ($Q R$ factorisation).
2. Do $j=k+1, k+2, \ldots, k+m_{1}$
(a) Set $V_{j}=\left[\begin{array}{lll}Q_{1} & Q_{2} \cdots Q_{j}\end{array}\right]$.
(b) Compute $\left[\begin{array}{c}A_{1 j} \\ A_{2 j} \\ \vdots \\ A_{j j}\end{array}\right]=V_{j}^{\prime} A Q_{j}$.
(c) $Q_{j+1} A_{j+1, j}=A Q_{j}-\sum_{k=1}^{j} Q_{k} A_{k j}$ ($Q R$ factorisation).

End Do.

- Find the symmetric X_{m}^{A} which uniquely satisfies the low-order Lyapunov equation $A_{m} X_{m}^{A}+X_{m}^{A} A_{m}^{\prime}+B_{m} B_{m}^{\prime}=0$.
- Compute $\left\|R_{m}^{A}\right\|_{F}:=\sqrt{2}\left\|A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\right\|_{F}$.
- Stopping test: If $\left\|R_{m}^{A}\right\|_{F}>\epsilon$, set $k:=k+m_{1}, m:=k+m_{1}$ and go to step 2 of the Arnoldi process.
- Form the approximate solution: $P_{m}:=V_{m} X_{m}^{A} V_{m}^{\prime}$.

Remark 2.2. Computing the residual error norm $\left\|R_{m}^{A}\right\|_{F}$ at the end of each Arnoldi process iteration requires $\frac{25}{2}(m p)^{3}$ floating point operations and $2.5(m p)^{2}$ words of storage [12]. As $m p$ increases, the cost of calculating X_{m}^{A} becomes excessive, to counter this, the procedure above introduces the variable m_{1} (typically 3 or 4) which translates into the residual error norm being evaluated every m_{1} iterations of the Arnoldi process. Note that in the stopping test, m is the total number of iterations.

It is important to note that the algorithm converges in at $\operatorname{most} \bmod (N / p)+1$ steps using exact arithmetic (provided no curable breakdown occurs), at which point it yields the exact solution P^{*}. The point we wish to make here is that in practice, accurate solutions may be computed for $m p$ significantly smaller than N. The problem therefore rests with establishing theoretical error bounds for $\left\|P^{*}-P_{m}\right\|_{F}$, which would be useful in selecting an integer value for m to give a good approximate solution.

A drawback of the algorithm above is that as m increases, manipulations with V_{m} become expensive and storage requirements become excessive. One way to avoid this type of buildup is to truncate the orthogonalisation process by forcing the new Q_{m+1} to be orthogonal to only the last l columns of V_{m}, where l is a user specified integer parameter. The resulting block Hessenberg matrix A_{m} is block-banded with a superdiagonal bandwidth $l-1$. An advantage of implementing such an incomplete orthogonalisation process is that it requires only the storage of the last l columns of V_{m}; for further details we refer the reader to [6], [23], and [24]. Unfortunately, the simple formula of (24) no longer holds when incomplete orthogonalisation is in service, making it difficult to gauge how well the method is performing on a particular problem.

In [14], it is shown that numerical methods for solving (1) suffer from numerical instability; in particular, no numerical method will be backward stable. The following result gives one perturbation of the data in (1) for which the low-rank solution given in Theorem 2.1 is an exact solution.

Corollary 2.2. Suppose that m steps of the Arnoldi process have been taken and let $P_{m}:=V_{m} X_{m}^{A} V_{m}^{\prime}$ be the low-rank approximate solution of (1), where X_{m}^{A} satisfies (23). Then

$$
\begin{equation*}
\left(A-\Delta_{m}\right) P_{m}+P_{m}\left(A-\Delta_{m}\right)^{\prime}+B B^{\prime}=0, \tag{27}
\end{equation*}
$$

where $\Delta_{m}=Q_{m+1} A_{m+1, m} Q_{m}^{\prime}$ and $\left\|\Delta_{m}\right\|_{F}=\left\|A_{m+1, m}\right\|_{F}$.
Proof. Substituting $X_{m}:=X_{m}^{A}$ into (21) and using (25) gives

$$
\begin{align*}
& A\left(V_{m} X_{m}^{A} V_{m}^{\prime}\right)+\left(V_{m} X_{m}^{A} V_{m}^{\prime}\right) A^{\prime}+B B^{\prime} \\
& \quad=V_{m+1}\left[\begin{array}{cc}
0 & X_{m}^{A} E_{m} A_{m+1, m}^{\prime} \\
A_{m+1, m} E_{m}^{\prime} X_{m}^{A} & 0
\end{array}\right] V_{m+1}^{\prime} \tag{28}\\
& \quad=Q_{m+1} A_{m+1, m} E_{m}^{\prime} X_{m}^{A} V_{m}^{\prime}+V_{m} X_{m}^{A} E_{m} A_{m+1, m}^{\prime} Q_{m+1}^{\prime}
\end{align*}
$$

Equation (27) follows by rearranging (28) and noting that $E_{m}^{\prime}=Q_{m}^{\prime} V_{m}$. The expression for $\left\|\Delta_{m}\right\|_{F}$ follows from the fact that Q_{m} and Q_{m+1} are parts of an orthogonal matrix. Finally, observe that Δ_{m} is at most a rank p perturbation.
2.2. The Generalised Minimum Residual method (GMRES). In this section we address the problem of computing an approximate solution to (1) that meets some optimality condition. The method we propose is based on finding a symmetric X_{m} that minimises the norm of the residual error $R\left(X_{m}\right)$. We have termed this a Generalised Minimum Residual method (GMRES), as it is based on a similar idea of Saad and Schultz [28], developed in the context of solving linear systems. The problem we would like to solve can be stated as follows.

Problem 2.2. Find a symmetric $X_{m} \in \mathcal{R}^{m p \times m p}$ that minimises the residual error norm, namely,

$$
\left\|R_{m}^{G M}\right\|_{F}:=\min _{X_{m}=X_{m}^{\prime}}\left\|V_{m+1}\left[\begin{array}{cc}
A_{m} X_{m}+X_{m} A_{m}^{\prime}+B_{m} B_{m}^{\prime} & X_{m} E_{m} A_{m+1, m}^{\prime} \\
A_{m+1, m} E_{m}^{\prime} X_{m} & 0
\end{array}\right] V_{m+1}^{\prime}\right\|_{F} .
$$

Definition 2.1. The solution of Problem 2.2 relies on the following definitions:
(a) Let v_{j} denote the j th column of the matrix $V \in \mathcal{R}^{n \times m}$ and $\operatorname{vec}(V)$ be defined as

$$
\operatorname{vec}(V)=\left[\begin{array}{cccc}
v_{1}^{\prime} & v_{2}^{\prime} & \cdots & v_{n}^{\prime} \tag{29}
\end{array}\right]^{\prime} \in \mathcal{R}^{n m}
$$

(b) $A \otimes B$ denotes the Kronecker product of matrices $A \in \mathcal{R}^{k \times l}$ and $B \in \mathcal{R}^{n \times m}$; and is the matrix whose (i, j) block is $a_{i j} B$.

$$
A \otimes B=\left[\begin{array}{c}
a_{i j} B \tag{30}
\end{array}\right] \in \mathcal{R}^{(k n) \times(l m)} \quad \text { for } i=1 \text { to } k \quad \text { and } \quad j=1 \text { to } l
$$

from which we deduce

$$
\begin{align*}
\operatorname{vec}(A B C) & =\left(C^{\prime} \otimes A\right) \operatorname{vec}(B) \tag{31}\\
\operatorname{vec}(A)^{\prime} \operatorname{vec}(B) & =\operatorname{tr}\left(A^{\prime} B\right) \tag{32}\\
(A \otimes B)(C \otimes D) & =(A C \otimes B D) \tag{33}\\
(A \otimes B)^{\prime} & =A^{\prime} \otimes B^{\prime} \tag{34}
\end{align*}
$$

The following theorem is the main result of this subsection and gives the solution to Problem 2.2.

Theorem 2.3. Suppose that m steps of the Arnoldi process have been taken and that the residual error is given by (22), then if $\lambda_{i}\left(A_{m}\right)+\bar{\lambda}_{j}\left(A_{m}\right) \neq 0$, for all i, j

$$
\begin{equation*}
\left\|R_{m}^{G M}\right\|_{F}=\sqrt{\operatorname{tr}\left(B_{m}^{\prime}\left(A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right) B_{m}\right)} \tag{35}
\end{equation*}
$$

where $X_{m}^{G M}$ satisfies the mp-dimensional linear matrix equation

$$
\begin{align*}
& A_{m}^{\prime}\left(A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right)+\left(A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right) A_{m} \\
& \quad+E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} X_{m}^{G M}+X_{m}^{G M} E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime}=0 \tag{36}
\end{align*}
$$

Proof. The first part of the proof will establish that $X_{m}^{G M}$ satisfies the linear matrix equation (36), while the residual error norm given in (35) is derived in the second part.

Starting with (22), we have

$$
\begin{align*}
\left\|R_{m}\left(X_{m}\right)\right\|_{F}^{2}= & \operatorname{tr}\left(\left[A_{m} X_{m}+X_{m} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right]^{2}\right) \\
& +\operatorname{tr}\left(X_{m} E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} X_{m}\right) \tag{37}\\
& +\operatorname{tr}\left(A_{m+1, m} E_{m}^{\prime} X_{m} X_{m} E_{m} A_{m+1, m}^{\prime}\right)
\end{align*}
$$

since V_{m+1} is part of an orthogonal matrix. Using (31) and (32) of Definition 2.1,
$\left\|R_{m}\left(X_{m}\right)\right\|_{F}^{2}=\left\|\left(I \otimes A_{m}+A_{m} \otimes I\right) \operatorname{vec}\left(X_{m}\right)+\operatorname{vec}\left(B_{m} B_{m}^{\prime}\right)\right\|_{2}^{2}$

$$
\begin{align*}
& +\left\|\left(I \otimes A_{m+1, m} E_{m}^{\prime}\right) \operatorname{vec}\left(X_{m}\right)\right\|_{2}^{2}+\left\|\left(A_{m+1, m} E_{m}^{\prime} \otimes I\right) \operatorname{vec}\left(X_{m}\right)\right\|_{2}^{2} \tag{38}\\
= & \left\|\left[\begin{array}{c}
I \otimes A_{m}+A_{m} \otimes I \\
I \otimes A_{m+1, m} E_{m}^{\prime} \\
A_{m+1, m} E_{m}^{\prime} \otimes I
\end{array}\right] \operatorname{vec}\left(X_{m}\right)+\left[\begin{array}{c}
\operatorname{vec}\left(B_{m} B_{m}^{\prime}\right) \\
0_{m p \times 1} \\
0_{m p \times 1}
\end{array}\right]\right\|_{2}^{2} \tag{39}\\
\equiv & \left\|\bar{A}_{m} \bar{x}_{m}+\bar{b}_{m}\right\|_{2}^{2} \tag{40}
\end{align*}
$$

with a one-to-one correspondence between (39) and (40).
Since (40) is a least squares problem, it follows that its minimum is achieved when

$$
\begin{equation*}
\bar{A}_{m}^{\prime}\left(\bar{A}_{m} \bar{x}_{m}+\bar{b}_{m}\right)=0 \tag{41}
\end{equation*}
$$

[12]. Substituting the terms of (39) into (41) and using (33) and (34) yields
$\left(I \otimes A_{m}+A_{m} \otimes I\right)^{\prime}\left\{\left(I \otimes A_{m}+A_{m} \otimes I\right) \operatorname{vec}\left(X_{m}\right)+\operatorname{vec}\left(B_{m} B_{m}^{\prime}\right)\right\}$

$$
+\left(I \otimes E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime}\right) \operatorname{vec}\left(X_{m}\right)+\left(E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} \otimes I\right) \operatorname{vec}\left(X_{m}\right)=0
$$

Using (31) and (34),

$$
\begin{align*}
0= & \left(I \otimes A_{m}+A_{m} \otimes I\right)^{\prime} \operatorname{vec}\left(A_{m} X_{m}+X_{m} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right) \tag{43}\\
& +\operatorname{vec}\left(E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} X_{m}\right)+\operatorname{vec}\left(X_{m} E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime}\right) \\
0= & A_{m}^{\prime}\left(A_{m} X_{m}+X_{m} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right)+\left(A_{m} X_{m}+X_{m} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right) A_{m} \tag{44}\\
& +E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} X_{m}+X_{m} E_{m} A_{m+1, m}^{\prime} A_{m+1, m}^{\prime} E_{m}^{\prime},
\end{align*}
$$

which is the linear matrix equation given in (36). This completes the proof of the first part.

Suppose $X_{m}^{G M}$ satisfies (36); then substituting $\operatorname{tr}\left(X_{m}^{G M} \times(36)\right)$ into (37), and using the property $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ followed by some algebra, we get that

$$
\begin{equation*}
\left\|R_{m}^{G M}\right\|_{F}^{2}=\operatorname{tr}\left(B_{m}^{\prime}\left(A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right) B_{m}\right) \tag{45}
\end{equation*}
$$

from which (35) follows, thereby completing the proof.
Remark 2.3. In the proof above, we have elected to use the Kronecker tensor approach because of the close parallel it shows with GMRES à la Saad and Schultz [28]. Since the Frobenius norm of the residue $R_{m}\left(X_{m}\right)$ is expressed as

$$
\left\|R_{m}\left(X_{m}\right)\right\|_{F}^{2}=\operatorname{tr}\left(R_{m}\left(X_{m}\right) R_{m}\left(X_{m}\right)^{\prime}\right)
$$

an alternative way to establish (36) is to use trace differentiation as defined in [2].
Corollary 2.4. $X_{m}^{G M}$ satisfies the mp-dimensional linear equation (36) if and only if the solution residue $R_{m}^{G M}$ satisfies the Galerkin type condition

$$
\begin{equation*}
V_{m}^{\prime}\left(A^{\prime} R_{m}^{G M}+R_{m}^{G M} A\right) V_{m}=0 \tag{46}
\end{equation*}
$$

Proof. Substituting (22) into the left-hand side of (46) gives

$$
\begin{align*}
& V_{m}^{\prime}\left(A^{\prime} R_{m}^{G M}+R_{m}^{G M} A\right) V_{m} \tag{47}\\
& =V_{m}^{\prime} A^{\prime}\left[V_{m} Q_{m+1}\right] \\
& \quad \cdot\left[\begin{array}{cc}
A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime} & X_{m}^{G M} E_{m} A_{m+1, m}^{\prime} \\
A_{m+1, m}^{\prime} X_{m}^{G M} & 0
\end{array}\right]\left[\begin{array}{c}
V_{m}^{\prime} \\
Q_{m+1}^{\prime}
\end{array}\right] V_{m} \\
& \quad+V_{m}^{\prime}\left[V_{m} Q_{m+1}\right] \\
& \quad \cdot\left[\begin{array}{cc}
A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime} & X_{m}^{G M} E_{m} A_{m+1, m}^{\prime} \\
A_{m+1, m} E_{m}^{\prime} X_{m}^{G M} & 0
\end{array}\right]\left[\begin{array}{c}
V_{m}^{\prime} \\
Q_{m+1}^{\prime}
\end{array}\right] A V_{m} .
\end{align*}
$$

Substituting (19) into (47) followed by some simple algebra yields

$$
\begin{align*}
& V_{m}^{\prime}\left(A^{\prime} R_{m}^{G M}+R_{m}^{G M} A\right) V_{m} \tag{48}\\
& = \\
& \quad\left[\begin{array}{ll}
A_{m}^{\prime} & E_{m} A_{m+1, m}^{\prime}
\end{array}\right]\left[\begin{array}{c}
A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime} \\
A_{m+1, m} E_{m}^{\prime} X_{m}^{G M}
\end{array}\right] \\
& \quad+\left[\begin{array}{ll}
A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime} & X_{m}^{G M} E_{m} A_{m+1, m}^{\prime}
\end{array}\right]\left[\begin{array}{c}
A_{m} \\
A_{m+1, m} E_{m}^{\prime}
\end{array}\right] .
\end{align*}
$$

The right-hand side of (48) is the $m p$-dimensional linear matrix equation given in (36). The result follows immediately.

This corollary shows that an equivalent way of posing the GMRES problem is to determine an approximate solution $P_{m}:=V_{m} X_{m} V_{m}^{\prime}$ that meets the Galerkin type condition $V_{m}^{\prime}\left(A^{\prime} R_{m}\left(X_{m}\right)+R_{m}\left(X_{m}\right) A\right) V_{m}=0$. The complete GMRES-Lyapunov algorithm is summarised in the following procedure.

GMRES-Lyapunov solver.

- Start: Specify a tolerance $\epsilon>0$, set an integer parameter m_{1}, and, set $k=0$ and $m:=m_{1}$.
- The Arnoldi process:

1. Compute $B=Q_{1} R_{1}$ ($Q R$ factorisation).
2. Do $j=k+1, k+2, \ldots, k+m_{1}$.
(a) Set $V_{j}=\left[Q_{1} Q_{2} \cdots Q_{j}\right]$.
(b) Compute $\left[\begin{array}{c}A_{1 j} \\ A_{2 j} \\ \vdots \\ A_{j j}\end{array}\right]=V_{j}^{\prime} A Q_{j}$.
(c) $Q_{j+1} A_{j+1, j}=A Q_{j}-\sum_{k=1}^{j} Q_{k} A_{k j}(Q R$ factorisation).

End Do.

- Find the symmetric $X_{m}^{G M}$ which uniquely satisfies $A_{m}^{\prime}\left(A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right)+\left(A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right) A_{m}+$ $E_{m} \times A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} X_{m}^{G M}+X m^{G M} E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime}=0$.
- Compute $\left\|R_{m}^{G M}\right\|_{F}:=\sqrt{\operatorname{tr}\left(B_{m}^{\prime}\left(A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right) B_{m}\right)}$.
- Stopping test: If $\left\|R_{m}^{G M}\right\|_{F}>\epsilon$, set $k:=k+m_{1}, m:=k+m_{1}$ and go to step 2 of the Arnoldi process.
- Form the approximate solution: $P_{m}:=V_{m} X_{m}^{G M} V_{m}^{\prime}$.

Suppose that m steps of the Arnoldi process are taken, then under certain conditions, the right-hand side of step (c) may be zero. In such a situation, Q_{m+1} cannot be calculated and consequently, the algorithm terminates prematurely, yielding

$$
\begin{equation*}
A V_{m}=V_{m} A_{m} \tag{49}
\end{equation*}
$$

This type of breakdown is referred to as happy breakdown [27] and takes place when the span of V_{m} is invariant with respect to A. The exact solution may thus be computed.

Corollary 2.5. In the event of happy breakdown after m steps of the Arnoldi process, Arnoldi and GMRES yield the same solution, namely, the exact solution P^{*}.

Proof. Substituting (49) into (21) gives $R_{m}\left(X_{m}\right)=V_{m}\left(A_{m} X_{m}+X_{m} A_{m}^{\prime}+\right.$ $\left.B_{m} B_{m}^{\prime}\right) V_{m}^{\prime}$. In the case of Arnoldi, $V_{m}^{\prime} R_{m}\left(X_{m}\right) V_{m}=0 \Leftrightarrow A_{m} X_{m}^{A}+X_{m}^{A} A_{m}^{\prime}+B_{m} B_{m}^{\prime}=$ 0 , while in the case of GMRES, it is clear that $\min \left\|R_{m}\left(X_{m}\right)\right\|_{F}=0$ from which it follows that $A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}=0$. Arnoldi and GMRES have a solution residue $R_{m}^{A}=R_{m}^{G M}=0$, and exact solutions $P^{*}=P_{m}=V_{m} X_{m}^{A} V_{m}^{\prime}=$ $V_{m} X_{m}^{G M} V_{m}^{\prime}$.

If, on the other hand, the right-hand side of step (c) is "small," it becomes difficult to construct Q_{m+1}, which is orthogonal to V_{m}. Wilkinson [32] recommends reorthogonalising the newly computed Q_{m+1} which, although expensive, yields a [$V_{m} Q_{m+1}$] orthogonal to within working precision.

The following corollary gives theoretical bounds on the quality of the approximate solution for Arnoldi and GMRES, which are specialisations of those in [13].

Corollary 2.6. Suppose that m steps of the Arnoldi process are taken and that $\lambda_{\max }\left(A+A^{\prime}\right)<0$; then

$$
\frac{\sqrt{2}|\eta|}{\sqrt{N}\|A\|_{F}\|B\|_{F}^{2}}\left\|A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\right\|_{F} \leq \frac{\left\|P^{*}-P_{m}\right\|_{F}}{\left\|P^{*}\right\|_{F}} \leq \frac{\sqrt{2 N}\|A\|_{F}}{|\eta|\|B\|_{F}^{2}}\left\|A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\right\|_{F}
$$

for the Arnoldi, and

$$
\begin{align*}
& \frac{|\eta|}{\sqrt{N}\|A\|_{F}\|B\|_{F}^{2}} \sqrt{\operatorname{tr}\left(B_{m}^{\prime}\left(A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right) B_{m}\right)} \leq \frac{\left\|P^{*}-P_{m}\right\|_{F}}{\left\|P^{*}\right\|_{F}} \tag{50}\\
& \frac{\left\|P^{*}-P_{m}\right\|_{F}}{\left\|P^{*}\right\|_{F}} \leq \frac{\sqrt{N}\|A\|_{F}}{|\eta|\|B\|_{F}^{2}} \sqrt{\operatorname{tr}\left(B_{m}^{\prime}\left(A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right) B_{m}\right)} \tag{51}
\end{align*}
$$

for GMRES, where $|\eta|=-\lambda_{\max }\left(A+A^{\prime}\right) / 2$ is the logarithmic norm of A [12].
In this section, we have presented two methods for computing low-rank approximate solutions to large-scale Lyapunov equations. The first method computes an approximate solution $P_{m}:=V_{m} X_{m} V_{m}^{\prime}$ such that $V_{m}^{\prime} R\left(X_{m}\right) V_{m}=0$, while the second minimises $\left\|R_{m}\left(X_{m}\right)\right\|_{F}$. Finally, simple expressions for the residual error norm are
derived in each case. In the above discussion we have not alluded to any practical way of solving (36). This is the object of the next section, where we will consider a solution technique for the $m p$-dimensional linear matrix equation arising from the GMRES method.
3. The GMRES linear matrix equation. In this section we present an algorithm for the solution of the linear matrix equation given in (36). Since A_{m} is block upper-Hessenberg and $B_{m} B_{m}^{\prime}$ is banded and symmetric, we will show how to exploit this rich structure to facilitate the calculation of X_{m}.

In an early paper, Howland and Senez [17] gave a simplified solution to the Lyapunov matrix equation

$$
\begin{equation*}
A X+X A^{\prime}+D=0 \tag{52}
\end{equation*}
$$

in which A is lower-Hessenberg and D is diagonal. In this development, we extend and adapt their method to solve the linear matrix equation of (36) arising from the GMRES problem. Throughout this section, we will set $A:=A_{m}, D:=B_{m} B_{m}^{\prime}$. E is the matrix of the last p columns of the $m p$-identity matrix and $A_{m+1, m}$ remains as defined in §3. Finally, we will assume for the purposes of brevity that curable breakdown has not taken place during the first m iterations. In this simplified notation, (36) may be rewritten as

$$
\begin{align*}
& A^{\prime}\left(A X+X A^{\prime}+D\right)+\left(A X+X A^{\prime}+D\right) A+E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime} X \\
& \quad+X E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}=0 \tag{53}
\end{align*}
$$

In this section, the solution to (53) is derived as a linear combination $X:=\sum_{i=1}^{n} \rho_{i} X_{i}$ for $n:=\sum_{i=1}^{p}(m p+1-i)$ linearly independent, symmetric matrices X_{i} where each X_{i} is constructed to satisfy $A X_{i}+X_{i} A^{\prime}+D_{i}=M_{i}$ for some banded symmetric D_{i}, and symmetric M_{i}. Finally, the ρ_{i} 's are obtained by solving the nonsingular linear system $\sum_{i=1}^{n} \rho_{i} D_{i}=D$. We start with the following definitions and preliminary results needed to establish the main result of this subsection.

Definition 3.1. A matrix X_{i} and a banded, symmetric matrix D_{i} of bandwidth $p-1$ [12] are called a GMRES pair with respect to A if they satisfy the linear matrix equation

$$
\begin{align*}
& A^{\prime}\left(A X_{i}+X_{i} A^{\prime}+D_{i}\right)+\left(A X_{i}+X_{i} A^{\prime}+D_{i}\right) A+E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime} X_{i} \\
& \quad X_{i} E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}=0 . \tag{54}
\end{align*}
$$

Lemma 3.1. If $\lambda_{i}(A)+\bar{\lambda}_{j}(A) \neq 0$ for all i, j then (53) admits a unique symmetric solution, $X=0$ if and only if $D=0$.

Proof. If $D=0$, then (53) becomes

$$
\begin{equation*}
A^{\prime}\left(A X+X A^{\prime}\right)+\left(A X+X A^{\prime}\right) A+E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime} X+X E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}=0 \tag{55}
\end{equation*}
$$

The vec form of (55) is given by

$$
\begin{align*}
0= & \left\{\left(I \otimes A^{\prime} A\right)+\left(A \otimes A^{\prime}\right)+\left(A^{\prime} \otimes A\right)+\left(A^{\prime} A \otimes I\right)\right\} \operatorname{vec}(X) \\
& +\left\{\left(I \otimes E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}\right)+\left(E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime} \otimes I\right)\right\} \operatorname{vec}(X) \\
= & {\left[(I \otimes A+A \otimes I)^{\prime}\left(A_{m+1, m} E^{\prime} \otimes I\right)^{\prime}\left(I \otimes A_{m+1, m} E^{\prime}\right)^{\prime}\right]\left[\begin{array}{c}
I \otimes A+A \otimes I \\
A_{m+1, m} E^{\prime} \otimes I \\
I \otimes A_{m+1, m} E^{\prime}
\end{array}\right] \operatorname{vec}(X), } \tag{56}
\end{align*}
$$

using the identities given in (33) and (34). It is well known that if $\lambda_{i}(A)+\bar{\lambda}_{j}(A) \neq 0$ for all i, j, then $(I \otimes A+A \otimes I)$ is nonsingular [10]; consequently, the solution to (56) is $\operatorname{vec}(X)=0$ and therefore, the only solution to (55) is $X=0$. Conversely, if $X=0$, then (53) becomes $A^{\prime} D+D A=0$, which can only be true if $D=0$ since $\lambda_{i}(A)+\bar{\lambda}_{j}(A) \neq 0$ for all i, j.

Consider n GMRES pairs $\left(X_{1}, D_{1}\right),\left(X_{2}, D_{2}\right), \ldots,\left(X_{n}, D_{n}\right)$ with respect to A, then for any constants $\rho_{1}, \rho_{2}, \ldots, \rho_{n},\left(\sum_{i=1}^{n} \rho_{i} X_{i}, \sum_{i=1}^{n} \rho_{i} D_{i}\right)$ is also a GMRES pair with respect to A; therefore,

$$
\begin{align*}
& A^{\prime}\left(A\left(\sum_{i=1}^{n} \rho_{i} X_{i}\right)+\left(\sum_{i=1}^{n} \rho_{i} X_{i}\right) A^{\prime}+\left(\sum_{i=1}^{n} \rho_{i} D_{i}\right)\right) \\
& \quad+E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}\left(\sum_{i=1}^{n} \rho_{i} X_{i}\right) \\
& \quad+\left(A\left(\sum_{i=1}^{n} \rho_{i} X_{i}\right)+\left(\sum_{i=1}^{n} \rho_{i} X_{i}\right) A^{\prime}+\left(\sum_{i=1}^{n} \rho_{i} D_{i}\right)\right) A \tag{57}\\
& \quad+\left(\sum_{i=1}^{n} \rho_{i} X_{i}\right) E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}=0 .
\end{align*}
$$

Subtracting (57) from (53) gives

$$
\begin{aligned}
& A^{\prime}\left(A\left(X-\sum_{i=1}^{n} \rho_{i} X_{i}\right)+\left(X-\sum_{i=1}^{n} \rho_{i} X_{i}\right) A^{\prime}+\left(D-\sum_{i=1}^{n} \rho_{i} D_{i}\right)\right) \\
& \quad+\left(A\left(X-\sum_{i=1}^{n} \rho_{i} X_{i}\right)+\left(X-\sum_{i=1}^{n} \rho_{i} X_{i}\right) A^{\prime}+\left(D-\sum_{i=1}^{n} \rho_{i} D_{i}\right)\right) A \\
& \quad+E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}\left(X-\sum_{i=1}^{n} \rho_{i} X_{i}\right) \\
& \quad+\left(X-\sum_{i=1}^{n} \rho_{i} X_{i}\right) E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}=0
\end{aligned}
$$

Lemma 3.1 states that $X=\sum_{i=1}^{n} \rho_{i} X_{i}$ if and only if $D=\sum_{i=1}^{n} \rho_{i} D_{i}$. The solution to (53) will be taken to have the form $X=\sum_{i=1}^{n} \rho_{i} X_{i}$, for which we will give constructions for D_{i}, X_{i}, and ρ_{i} such that

$$
\begin{equation*}
D=\sum_{i=1}^{n} \rho_{i} D_{i} \tag{59}
\end{equation*}
$$

Matrices D and D_{i} each have a bandwidth of $p-1$, therefore, (59) has a unique solution if and only if (a) $n:=\sum_{i=1}^{p}(m p+1-i)$ and (b) $D_{1}, D_{2}, \ldots, D_{n}$ are linearly independent.

The construction of X relies on selecting the last p columns (rows) of $n X_{i}$'s in such a way that they are linearly independent. The following lemma shows that if the $n X_{i}$'s are linearly independent, then so too are the D_{i} 's.

Lemma 3.2. If $\lambda_{i}(A)+\bar{\lambda}_{j}(A) \neq 0$ for all i, j, then, if $X_{1}, X_{2}, \ldots, X_{n}$ and $D_{1}, D_{2}, \ldots, D_{n}$ are GMRES pairs, with respect to A, then when $X_{1}, X_{2}, \ldots, X_{n}$ are linearly independent so are $D_{1}, D_{2}, \ldots, D_{n}$.

Proof. Suppose that $D_{1}, D_{2}, \ldots, D_{n}$ are linearly dependent, so that, for some constants $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, not all zero, $\sum_{i=1}^{n} \alpha_{i} D_{i}=0$, then substituting into (53) gives

$$
\begin{align*}
& A^{\prime}\left(A\left(\sum_{i=1}^{n} \alpha_{i} X_{i}\right)+\left(\sum_{i=1}^{n} \alpha_{i} X_{i}\right) A^{\prime}+\left(\sum_{i=1}^{n} \alpha_{i} D_{i}\right)\right) \\
& +E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}\left(\sum_{i=1}^{n} \alpha_{i} X_{i}\right) \\
& +\left(A\left(\sum_{i=1}^{n} \alpha_{i} X_{i}\right)+\left(\sum_{i=1}^{n} \alpha_{i} X_{i}\right) A^{\prime}+\left(\sum_{i=1}^{n} \alpha_{i} D_{i}\right)\right) A \tag{60}\\
& +\left(\sum_{i=1}^{n} \alpha_{i} X_{i}\right) E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}=0
\end{align*}
$$

which is uniquely satisfied by $\sum_{i=1}^{n} \alpha_{i} X_{i}=0$ following Lemma 3.1, hence X_{1}, X_{2}, \ldots, X_{n} are linearly dependent. Since these are assumed linearly independent, the result follows by contradiction.

Lemma 3.2 shows that since the X_{i} 's are linearly independent by construction, so too are the D_{i} 's; consequently, (59) is a nonsingular system and the ρ_{i} 's may be uniquely determined. All that remains is to construct the unknown elements of X_{i} and D_{i}, which are given in the following result.

Theorem 3.3. Assume that $\lambda_{i}(A)+\bar{\lambda}_{j}(A) \neq 0$ for all i, j; then there exists at least n linearly independent GMRES pairs $\left(X_{1}, D_{1}\right), \ldots,\left(X_{n}, D_{n}\right)$ with respect to A where $n:=\sum_{i=1}^{p}(m p+1-i)$.

Proof. Consider $X_{1}, X_{2}, \ldots, X_{n}$ symmetric matrices whose last p columns (rows) have been selected as follows. Firstly, the $n X_{j}$'s have their last p columns (rows) set to zero; then the first $m p \quad X_{j}$'s each have their last column (row) set, respectively, to the columns (rows) of the $m p$ identity matrix; the next ($m p-1$) X_{j} 's have their ($m p-1$)th column (row) set, respectively, to the columns (rows) of the ($m p-1$) identity matrix, etc. It is clear that this selection of the last p columns (rows) of X_{j} leads to n linearly independent X_{j} 's since each of their last $m p \times p,(p \times m p)$ blocks are linearly independent. The key observation is that fixing the last p columns (rows) of X_{j} fully determines the last two terms of (54) since $E^{\prime} X_{j},\left(X_{j} E\right)$ is the last p rows (columns) of X_{j}. Defining $Q_{j}:=E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime} X_{j}+X_{j} E A_{m+1, m}^{\prime} A_{m+1, m} E^{\prime}$ and substituting into (54) yields

$$
\begin{equation*}
A^{\prime} M_{j}+M_{j} A+Q_{j}=0 \tag{61}
\end{equation*}
$$

in which $M_{j}:=A X_{j}+X_{j} A^{\prime}+D_{j}$; furthermore, (61) admits a unique solution M_{j}. Substituting M_{j} into its definition gives

$$
\begin{equation*}
A X_{j}+X_{j} A^{\prime}+D_{j}=M_{j} \tag{62}
\end{equation*}
$$

from which it follows that X_{j} satisfies (54) if it satisfies (62). We determine the remaining elements of X_{j} by considering the skew symmetric T_{j} and banded symmetric D_{j} matrices defined by

$$
\begin{equation*}
A X_{j}-\frac{1}{2} M_{j}=T_{j}-\frac{1}{2} D_{j} \tag{63}
\end{equation*}
$$

it is clear that if the GMRES pair $\left(X_{j}, D_{j}\right)$ satisfies (63), then it satisfies (62). It will be shown by induction that the remaining unknown elements of X_{j} and the elements of D_{j} and T_{j} may be derived uniquely by (63). When this is the case, the X_{j} 's are clearly independent. So by Lemma 3.2, the D_{j} are also independent. Block partitioning (63) gives

$$
\begin{align*}
(\mathrm{m}-\mathrm{k}-1) \mathrm{p} \mathrm{p} \\
\mathrm{p} \tag{64}\\
\mathrm{p} \\
(\mathrm{k}-1) \mathrm{p}
\end{align*} \quad\left[\begin{array}{cccc}
(\mathrm{m}-\mathrm{k}-1) \mathrm{p} & \mathrm{p} & \mathrm{p} & (\mathrm{k}-1) \mathrm{p} \\
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
0 & A_{32} & A_{33} & A_{34} \\
0 & 0 & A_{43} & A_{44}
\end{array}\right]\left[\begin{array}{cccc}
X_{11} & X_{12} & X_{13} & X_{14} \\
X_{12}^{\prime} & X_{22} & X_{23} & X_{24} \\
X_{13}^{\prime} & X_{23}^{\prime} & X_{33}^{\prime} & X_{34} \\
X_{14}^{\prime} & X_{24}^{\prime} & X_{34}^{\prime} & X_{44}
\end{array}\right] .
$$

Suppose that the last $k p$ columns (rows) of X_{j} and the last ($k-1$) p columns (rows) of T_{j} and D_{j} are given. The following development shows that this is sufficient to determine the remaining elements of X_{j}, T_{j}, and D_{j}. The blocks X_{12} and X_{22} may be derived from the following blocks of (64):
(65) $(1,3)$,

$$
\begin{array}{ll}
(1,3), & T_{13}=A_{11} X_{13}+A_{12} X_{23}+A_{13} X_{33}+A_{14} X_{34}^{\prime}-\frac{1}{2} M_{13} \\
(3,1), & X_{12}=-\left(X_{13} A_{33}^{\prime}+X_{14} A_{34}^{\prime}+T_{13}-\frac{1}{2} M_{13}\right)\left(A_{32}^{\prime}\right)^{-1} \\
(2,3), & T_{23}-\frac{1}{2} D_{23}=A_{21} X_{13}+A_{22} X_{23}+A_{23} X_{33}+A_{24} X_{34}^{\prime}-\frac{1}{2} M_{23} \\
(3,2), & -T_{23}^{\prime}-\frac{1}{2} D_{23}^{\prime}=A_{32} X_{22}+A_{33} X_{23}^{\prime}+A_{34} X_{24}^{\prime}-\frac{1}{2} M_{23}^{\prime}
\end{array}
$$

Adding (67) to the transpose of (68) gives

$$
\begin{align*}
X_{22}= & \left(M_{23}-X_{23} A_{33}^{\prime}-X_{24} A_{34}^{\prime}-A_{21} X_{13}-A_{22} X_{23}-A_{23} X_{33}-A_{24} X_{34}^{\prime}\right)\left(A_{32}^{\prime}\right)^{-1} \tag{69}\\
& -D_{23}\left(A_{32}^{\prime}\right)^{-1} .
\end{align*}
$$

Since curable breakdown has not occurred during the first m iterations, $Q_{j+1} A_{j+1, j}=$ $A Q_{j}-\sum_{k=1}^{j} Q_{k} A_{k j}$ (step (c) of the Arnoldi process) has full column rank. Hence each subdiagonal block of (18) is nonsingular by the construction in the Arnoldi process; consequently, A_{32} is nonsingular. The only unknown in the right-hand side of (69) is D_{23}. Observe that D_{j} is banded; therefore, D_{23} is strictly lower-triangular, and since A_{32}^{\prime} is lower-triangular, $D_{23}\left(A_{32}^{\prime}\right)^{-1}$ is strictly lower-triangular. The upper-triangular part of $-\left(X_{23} A_{33}^{\prime}+X_{24} A_{34}^{\prime}+A_{21} X_{13}+A_{22} X_{23}+A_{23} X_{33}+A_{24} X_{34}^{\prime}-M_{23}\right)\left(A_{32}^{\prime}\right)^{-1}$ therefore determines the upper-triangular part of X_{22} and by the required symmetry of X_{j} the lower-triangular part of X_{22}. Substituting X_{22} into (69) yields $D_{23} ; T_{23}$ is then evaluated from (67). T_{33} and D_{33} are derived from
$(3,3) \quad T_{33}-\frac{1}{2} D_{33}=A_{32} X_{23}+A_{33} X_{33}+A_{34} X_{34}^{\prime}-\frac{1}{2} M_{33}$,
adding (70) to its transpose. Using the facts that T_{j} is skew symmetric and D_{j} and M_{j} are symmetric gives

$$
\begin{equation*}
D_{33}=-\left(A_{32} X_{23}+A_{33} X_{33}+A_{34} X_{34}^{\prime}+X_{23}^{\prime} A_{32}^{\prime}+X_{33} A_{33}^{\prime}+X_{34} A_{34}^{\prime}-M_{33}\right) \tag{71}
\end{equation*}
$$

Back-substituting into (70) finally yields T_{33}. It follows by induction that fixing the last p columns (rows) of X_{j} uniquely determines the remaining elements of X_{j} and the elements of D_{j} and T_{j}. An important observation is that none of the calculations changes the last p columns (rows) of X_{j} so that n repetitions with n linearly independent X_{j} will generate n independent GMRES pairs (X_{j}, D_{j}) by Lemma 3.2, thereby completing the proof.

The solution to the linear matrix equation given in (53) may now be written as a linear combination of n linearly independent GMRES pairs (X_{j}, D_{j}) obtained by the construction of Theorem 3.3. The constants $\rho_{1}, \rho_{2}, \ldots, \rho_{n}$ are obtained by solving the nonsingular system (59) and hence $X=\sum_{i=1}^{n} \rho_{i} X_{i}$ is the required solution.

Remark 3.1. Suppose that d_{i}^{j} and d_{j} are vectors of the j th super-diagonal elements of D_{i} and D, respectively, for $i=1, \ldots, n$, and $j=0, \ldots, p-1$. Then (59) may be written as $L x=b$, in which

$$
L=\left[\begin{array}{cccc}
d_{1}^{0} & d_{2}^{0} & \cdots & d_{n}^{0} \tag{72}\\
d_{1}^{1} & d_{2}^{1} & \cdots & d_{n}^{2} \\
\vdots & \vdots & \vdots & \vdots \\
d_{1}^{p-1} & d_{2}^{p-1} & \cdots & d_{n}^{p-1}
\end{array}\right] \in \mathcal{R}^{n \times n}, x=\left[\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\vdots \\
\rho_{n}
\end{array}\right] \in \mathcal{R}^{n}, \text { and } b=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right] \in \mathcal{R}^{n}
$$

This linear system has a unique solution since the D_{i} 's are linearly independent (by Lemma 3.2).

The following procedure summarises the block solution of the GMRES linear matrix equation (53).

Block GMRES linear equation solver.

- Initialise by constructing n linearly independent matrices which are obtained by forming the last p columns (rows) of X_{j}.
- Do $j=1$ to n.

1. Form $Q_{j}:=E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} X_{j}+X_{j} E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime}$ and solve the Lyapunov equation $A^{\prime} M_{j}+M_{j} A+Q_{j}=0$ for the unknown M_{j}.
2. Do $k=1$ to $m-1$

- Partition X_{j}, A, and M_{j} as in (64) where the first $(m-k) p \times(m-k) p$ block of X and the first $(m-k+1) p \times(m-k+1) p$ blocks of T_{j} and D_{j} are unknown.
- Compute X_{12} from (64).
- Compute the upper triangular part of X_{22} and symmetrise.
- Compute T_{13}, T_{23}, and T_{33}, and, D_{23} and D_{33}.
- End Do (k).

3. End Do (j).

- Using Remark 3.1, solve the linear system $\sum_{i=1}^{n} \rho_{i} D_{i}=D$ to determine ρ_{i}.
- Form the solution; $X:=\sum_{i=1}^{n} \rho_{i} X_{i}$.

The residual error norm for the GMRES problem is given by

$$
\begin{equation*}
\left\|R\left(X_{m}^{G M}\right)\right\|_{F}=\sqrt{\operatorname{tr}\left(B_{m}^{\prime}\left(A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}\right) B_{m}\right)} \tag{73}
\end{equation*}
$$

Evaluating equation (73) may be efficiently implemented without forming $X_{m}^{G M}$ since $\sum_{i=1}^{n} \rho_{i} M_{i}=A_{m} X_{m}^{G M}+X_{m}^{G M} A_{m}^{\prime}+B_{m} B_{m}^{\prime}$. In such an implementation, the D_{j} 's
may be stored as vectors while only the upper-triangular part of the M_{j} 's need be stored. It must be pointed out that we require only that the starting matrices be linearly independent and consequently, other starting matrices for X_{j} may be used to compute the whole solution. In practice, the selection of these independent matrices appears to affect the quality of the computed $X_{m}^{G M}$. We have as yet not investigated the conditioning of the linear system in (59).

Remark 3.2. Although n low-dimensional Lyapunov equations are solved in step 1, the transformation of A to Schur form need only be carried out once.

In this section we have presented an algorithm for solving the linear matrix equation arising from the GMRES method. This solver exhibits features that may be exploited on parallel processors, this, together with update schemes, are topics of our ongoing research. The conditioning of the linear system of equations in (59) is not well understood and work continues on numerically enhancing this algorithm.
4. Extensions to other matrix equations. In this section we will show how the Krylov subspace techniques considered above can be applied to two other large matrix equation problems. The first is the approximate solution of large discrete-time Lyapunov equations which arise in the model reduction of large models described by first-order difference equations [10]. The second type of problem we address in this section is the approximate solution to large continuous time algebraic Riccati equations. Equations of this type arise in $\mathcal{H}^{\boldsymbol{\infty}}$, classical linear optimal control and filtering theories, and spectral factorisation problems [11], [19]. As these extensions are relatively straightforward, we will state the results without giving any proofs.
4.1. The discrete-time Lyapunov equation. Consider the discrete-time Lyapunov equation

$$
\begin{equation*}
A P A^{\prime}-P+B B^{\prime}=0 \tag{74}
\end{equation*}
$$

in which $A, P \in \mathcal{R}^{N \times N}, B \in \mathcal{R}^{N \times p}$, and, N is large and $p \ll N$. The Arnoldi process then generates an orthogonal basis V_{m} for the Krylov space given in (12), and the residual error for any approximate low-rank solution of the form $P_{m}=V_{m} X_{m} V_{m}^{\prime}$ is given by

$$
\begin{equation*}
R_{m}\left(X_{m}\right):=A\left(V_{m} X_{m} V_{m}^{\prime}\right) A^{\prime}-\left(V_{m} X_{m} V_{m}^{\prime}\right)+B B^{\prime} \tag{75}
\end{equation*}
$$

Substituting (19) into (75) gives

$$
R_{m}\left(X_{m}\right)=V_{m+1}\left[\begin{array}{cc}
A_{m} X_{m} A_{m}^{\prime}-X_{m}+B_{m} B_{m}^{\prime} & A_{m} X_{m} E_{m} A_{m+1, m}^{\prime} \tag{76}\\
A_{m+1, m} E_{m}^{\prime} X_{m} A_{m}^{\prime} & A_{m+1, m} E_{m}^{\prime} X_{m} E_{m} A_{m+1, m}^{\prime}
\end{array}\right] V_{m+1}^{\prime}
$$

since $V_{m} B_{m}=B$. We then seek a solution $P_{m}:=V_{m} X_{m} V_{m}^{\prime}$ by imposing the condition that $R_{m}\left(X_{m}\right)$ has an orthogonality property with respect to K_{m}.

Problem 4.1. Find an approximate solution $P_{m}:=V_{m} X_{m} V_{m}^{\prime}$ that satisfies the Galerkin type condition $V_{m}^{\prime} R_{m}\left(X_{m}\right) V_{m}=0$.

Theorem 4.1. Suppose that m steps of the Arnoldi process have been taken and that the residual error is given by (76); then if $\left|\lambda_{i}\left(A_{m}\right)\left(\lambda_{j}\left(A_{m}\right)\right)^{-1}\right| \neq 1$ for all i, j,
(a) $V_{m}^{\prime} R_{m}\left(X_{m}\right) V_{m}=0$ if and only if $X_{m}=X_{m}^{A}$, where X_{m}^{A} satisfies

$$
\begin{equation*}
A_{m} X_{m}^{A} A_{m}^{\prime}-X_{m}^{A}+B_{m} B_{m}^{\prime}=0 \tag{77}
\end{equation*}
$$

(b) If the conditions of (a) are met, then the residual error norm is given by

$$
\left\|R_{m}^{A}\right\|_{F}:=\left\|R_{m}\left(X_{m}^{A}\right)\right\|_{F}=\left\|A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\left[\begin{array}{ll}
\sqrt{2} A_{m}^{\prime} & E_{m} A_{m+1, m}^{\prime} \tag{78}
\end{array}\right]\right\|_{F}
$$

Proof. The proof is essentially the same as that of Theorem 2.1 except that it uses (76).

Next, we address the problem of computing a symmetric, an approximate solution to (74) which minimises the residual error norm.

Problem 4.2. Find a symmetric $X_{m} \in \mathcal{R}^{m \times m}$ that minimises the residual error norm, namely,

$$
\begin{aligned}
& \left\|R_{m}^{G M}\right\|_{F} \\
& :=\min \left\|V_{m+1}\left[\begin{array}{cc}
A_{m} X_{m} A_{m}^{\prime}-X_{m}+B_{m} B_{m}^{\prime} & A_{m} X_{m} E_{m} A_{m+1, m}^{\prime} \\
A_{m+1, m} E_{m}^{\prime} X_{m} A_{m}^{\prime} & A_{m+1, m} E_{m}^{\prime} X_{m} E_{m} A_{m+1, m}^{\prime}
\end{array}\right] V_{m+1}^{\prime}\right\|_{F} .
\end{aligned}
$$

Theorem 4.2. Suppose that m steps of the Arnoldi process have been taken and that the residual error is given by (76), then if $\left|\lambda_{i}\left(A_{m}\right)\left(\lambda_{j}\left(A_{m}\right)\right)^{-1}\right| \neq 1$, for all i, j,

$$
\begin{equation*}
\left\|R_{m}^{G M}\right\|_{F}=\sqrt{\operatorname{tr}\left(B_{m}^{\prime}\left(A_{m} X_{m}^{G M} A_{m}^{\prime}-X_{m}^{G M}+B_{m} B_{m}^{\prime}\right) B_{m}\right)} \tag{79}
\end{equation*}
$$

where $X_{m}^{G M}$ satisfies the mp-dimensional linear matrix equation
(80)

$$
\begin{align*}
& A_{m}^{\prime}\left(A_{m} X_{m}^{G M} A_{m}^{\prime}-X_{m}^{G M}+B_{m} B_{m}^{\prime}\right) A_{m}-\left(A_{m} X_{m}^{G M} A_{m}^{\prime}-X_{m}^{G M}+B_{m} B_{m}^{\prime}\right) \\
& +E_{m} A_{m+1, m}^{\prime} A_{m+1, m}^{\prime} E_{m}^{\prime} X_{m}^{G M} A_{m}^{\prime} A_{m}+A_{m}^{\prime} A_{m} X_{m}^{G M} E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} \tag{80}\\
& +E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime} X_{m}^{G M} E_{m} A_{m+1, m}^{\prime} A_{m+1, m} E_{m}^{\prime}=0
\end{align*}
$$

Proof. The proof is essentially the same as that of Theorem 2.2 except that it uses (76).

The following procedure summarises the solution of large discrete Lyapunov equations.

Arnoldi (GMRES)-Discrete Lyapunov solver.

- Calculate $V_{m}, Q_{m+1}, A_{m}, A_{m+1, m}$, and B_{m} via the Arnoldi process.
- Arnoldi: Find X_{m}^{A} which satisfies $A_{m} X_{m}^{A} A_{m}^{\prime}-X_{m}^{A}+B_{m} B_{m}^{\prime}=0$. Compute the residual error norm $\left\|R_{m}^{A}\right\|_{F}:=\left\|A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\left[\sqrt{2} A_{m}^{\prime}{ }_{m} E_{m} A_{m+1, m}^{\prime}\right]\right\|_{F}$ and form the approximate solution: $P_{m}:=V_{m} X_{m}^{A} V_{m}^{\prime}$.
- GMRES: Find $X_{m}^{G M}$, which satisfies (80).

Compute $\left\|R_{m}^{G M}\right\|_{F}:=\sqrt{\operatorname{tr}\left(B_{m}^{\prime}\left(A_{m} X_{m}^{G M} A_{m}^{\prime}-X_{m}^{G M}+B_{m} B_{m}^{\prime}\right) B_{m}\right)}$ and form the approximate solution: $P_{m}:=V_{m} X_{m}^{G M} V_{m}^{\prime}$.
The solution to the linear matrix equation in (80) may be computed using a variant of the construction presented in $\S 3$.
4.2. The algebraic Riccati equation. Consider the continuous-time algebraic Riccati equation

$$
\begin{equation*}
A P+P A^{\prime}-P C^{\prime} C P+B B^{\prime}=0 \tag{81}
\end{equation*}
$$

in which $A, P \in \mathcal{R}^{N \times N}, B \in \mathcal{R}^{N \times p}, C \in \mathcal{R}^{q \times N}$. The method of solution we will consider makes use of the following $2 N \times 2 N$ Hamiltonian matrix that is associated
with (81),

$$
\mathcal{H}=\left[\begin{array}{cc}
A^{\prime} & -C^{\prime} C \tag{82}\\
-B B^{\prime} & -A
\end{array}\right]
$$

The matrix \mathcal{H} in (82) has a number of important properties.

1. The Hamiltonian matrix \mathcal{H} has no imaginary axis eigenvalues if and only if $\left[j \omega I-A^{\prime} B_{m}\right]$ and $\left[\left(j \omega I-A^{\prime}\right)^{\prime} C_{m}^{\prime}\right]^{\prime}$ have full row and column rank, respectively, for all $\omega \in \mathcal{R}$.
2. Suppose that W transforms \mathcal{H} into a Jordan form; $W^{-1} \mathcal{H} W=J$, where $W=\left[w_{1}, w_{2}, \ldots, w_{2 N}\right]$ are the eigenvectors of \mathcal{H}. Then each solution to the Riccati equation in (81) may be expressed as $P:=W_{21} W_{11}^{-1}$, where W_{11} is assumed nonsingular and $\left[W_{11}^{\prime} W_{21}^{\prime}\right]^{\prime} \in \mathcal{R}^{2 N \times N}$ is a matrix of N eigenvectors of \mathcal{H} partitioned such that $W_{11}, W_{21} \in \mathcal{R}^{N \times N}$.

For further details, we refer the reader to [19] and the references therein.
Consider the Riccati equation in (81) where N is large and $p, q \ll N$. The Arnoldi process then generates an orthogonal basis V_{m} for the Krylov space K_{m} := $\operatorname{span}\left\{\left[B A B \quad A^{2} B \cdots A^{m-1} B\right]\right\}$. The residual error for any approximate solution of the form $P_{m}=V_{m} X_{m} V_{m}^{\prime}$ is then given by

$$
\begin{equation*}
R_{m}\left(X_{m}\right):=A\left(V_{m} X_{m} V_{m}^{\prime}\right)+\left(V_{m} X_{m} V_{m}^{\prime}\right) A^{\prime}-\left(V_{m} X_{m} V_{m}^{\prime}\right) C^{\prime} C\left(V_{m} X_{m} V_{m}^{\prime}\right)+B B^{\prime}=0 . \tag{83}
\end{equation*}
$$

Substituting (19) into (83) gives

$$
R_{m}\left(X_{m}\right)=V_{m+1}\left[\begin{array}{cc}
A_{m} X_{m}+X_{m} A_{m}^{\prime}-X_{m} C_{m}^{\prime} C_{m} X_{m}+B_{m} B_{m}^{\prime} & X_{m} E_{m} A_{m+1, m}^{\prime} \tag{84}\\
A_{m+1, m} E_{m}^{\prime} X_{m} & 0
\end{array}\right] V_{m+1}^{\prime},
$$

where $C_{m}:=C V_{m}$ and $V_{m} B_{m}=B$. We seek a solution $P_{m}=V_{m} X_{m} V_{m}^{\prime}$ in which V_{m} is an orthogonal basis of the Krylov space by imposing an orthogonality condition on K_{m} We can state the approximation problem as the following.

Problem 4.3. Find an approximate solution $P_{m}:=V_{m} X_{m} V_{m}^{\prime}$ that satisfies the Galerkin type condition $V_{m}^{\prime} R_{m}\left(X_{m}\right) V_{m}=0$.

Theorem 4.3. Suppose that m steps of the Arnoldi process have been taken and that the residual error is given by (84). Then provided that $\left[j \omega I-A_{m}^{\prime} B_{m}\right]$ and $\left[\left(j \omega I-A_{m}^{\prime}\right)^{\prime} C_{m}^{\prime}\right]^{\prime}$ have full row and column rank, respectively, for all $\omega \in \mathcal{R}$,
(a) $V_{m}^{\prime} R_{m}\left(X_{m}\right) V_{m}=0$ if and only if $X_{m}=X_{m}^{A}$, where X_{m}^{A} satisfies

$$
\begin{equation*}
A_{m} X_{m}^{A}+X_{m}^{A} A_{m}^{\prime}-X_{m}^{A} C_{m}^{\prime} C_{m} X_{m}^{A}+B_{m} B_{m}^{\prime}=0 \tag{85}
\end{equation*}
$$

(b) If the conditions of (a) are met, then the residual error norm is given by

$$
\begin{equation*}
\left\|R_{m}^{A}\right\|_{F}:=\left\|R_{m}\left(X_{m}^{A}\right)\right\|_{F}=\sqrt{2}\left\|A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\right\|_{F} . \tag{86}
\end{equation*}
$$

Proof. The proof is essentially the same as that of Theorem 2.1 except that it uses (84).

The following procedure summarises the solution of large algebraic Riccati equations.

Arnoldi-Continuous-Riccati solver.

- Calculate $V_{m}, Q_{m+1}, A_{m}, A_{m+1, m}$, and B_{m} via the Arnoldi process.
- Then find X_{m}^{A} which satisfies the low-dimensional algebraic Riccati equation $A_{m} X_{m}^{A}+X_{m}^{A} A_{m}^{\prime}-X_{m}^{A} C_{m}^{\prime} C_{m} X_{m}^{A}+B_{m} B_{m}^{\prime}=0$ (via the ordered Schur method [19]).
- Compute $\left\|R_{m}^{A}\right\|_{F}:=\sqrt{2}\left\|A_{m+1, m} E_{m}^{\prime} X_{m}^{A}\right\|_{F}$.
- Form the approximate solution: $P_{m}:=V_{m} X_{m}^{A} V_{m}^{\prime}$.

In control problems, typically, one is interested in computing a solution to the Riccati equation from either the stable or antistable basis for the eigenspace of the Hamiltonian matrix since it yields a symmetric and (semi) definite solution [19]. The discrete time Riccati equation may also be treated in a similar way to yield a residual error norm and a constraining linear matrix equation, the derivation of which we omit.
5. Numerical experiments. The purpose of this section is to illustrate with the help of two examples the behaviour of the residual error formulae presented in §3. The tests reported here were performed on a Sparc-10 Sun workstation using Pro-MATLAB running under Unix.

Example 1. In this example, we have chosen $A \in \mathcal{R}^{N \times N}$ and $B \in \mathcal{R}^{N \times p}$, where $N=1000$ and $p=4$. A is a diagonal matrix with its elements uniformly distributed in the interval $\left[\begin{array}{ll}0 & 1\end{array}\right]$ by taking $a_{j j}:=(j+1) /(N+1)$. The B matrix has the form

$$
B=\left[\begin{array}{cccc}
J_{1} & 0 & 0 & 0 \tag{87}\\
0 & J_{2} & 0 & 0 \\
0 & 0 & J_{3} & 0 \\
0 & 0 & 0 & J_{4}
\end{array}\right]
$$

which is defined as follows. Let J be a vector of ones in $\mathcal{R}^{\frac{N}{4}}$; then $J_{1}=J / 15$, $J_{2}=J / 150, J_{3}=J / 1500$, and $J_{4}=J / 15000$. Figure 1 shows the evolution of the residual error norm of the Arnoldi and GMRES methods for increasing rank of P_{m}. We make the following observations: the Arnoldi error is larger than that of GMRES as predicted and both exhibit nonincreasing profiles, although the theory predicts this behaviour only for GMRES.

Table 1 compares a few CPU run times for the Arnoldi and GMRES methods for increasing rank of P_{m}. The times reported in this table are in seconds. The larger CPU times needed for the GMRES method are attributed to the computationally intensive algorithm of $\S 3$. Step 1 of the block GMRES solver presented in $\S 3$ must be implemented as suggested in Remark 3.2. The following is a breakdown of the

Table 1
CPU run times for the Arnoldi and GMRES methods.

m	Arnoldi (secs)	GMRES (secs)
4	$2.6923000 \mathrm{e}-02$	$3.7431300 \mathrm{e}-01$
8	$4.7045000 \mathrm{e}-02$	$1.6965540 \mathrm{e}+00$
12	$8.0165000 \mathrm{e}-02$	$4.9038100 \mathrm{e}+00$
16	$1.2784200 \mathrm{e}-01$	$1.1461245 \mathrm{e}+01$
20	$2.0119000 \mathrm{e}-01$	$2.2708456 \mathrm{e}+01$
24	$3.2316100 \mathrm{e}-01$	$3.6983727 \mathrm{e}+01$
28	$3.8514500 \mathrm{e}-01$	$6.1250413 \mathrm{e}+01$
32	$5.0988800 \mathrm{e}-01$	$9.3542215 \mathrm{e}+01$

Fig. 1. Evolution of $\left\|R_{m}\left(X_{m}\right)\right\|_{F}$ for Arnoldi and GMRES methods for increasing $m p$.
work load in terms of floating point operations and memory requirements for each algorithm. The main difference in the two methods proposed is in the computation of a symmetric X_{m}; in the following, m is the iteration count; therefore, $A_{m}, X_{m} \in$ $\mathcal{R}^{m p \times m p}$, and $n=m p^{2}+\frac{p}{2}-\frac{p^{2}}{2}$ are defined in Theorem 3.3.

Bartels-Stewart [3] Schur decomposition: $10(m p)^{3}$. Solving linear systems: $0.5(m p)^{3}$. Obtaining the final solution: $2(m p)^{3}$. The total flop count is approximately $12.5(m p)^{3}$ with storage needs of approximately $2.5(m p)^{2}$, assuming that data are overwritten.

Block GMRES Schur decomposition: $10(m p)^{3}$. Solving linear systems: $0.5 n(m p)^{3}$. Form the M_{j} 's: $2 n(m p)^{3}$. Evaluate $X_{12}, X_{22}, T_{13}, D_{23}$, and D_{33} : no less than $\left(m^{4}+\frac{m}{2}+1\right)(m-1) p^{4} n$. Solve the linear system (59): $2 n^{3}$ and form the final solution: $2 n(m p)^{2}$. The total flop count is approximately $2 n^{3}+2 n(m p)^{2}+n\left(2.5(m p)^{3}+\left(m^{4}+\right.\right.$ $\left.\left.\frac{m}{2}+1\right)(m-1) p^{4}\right)+10(m p)^{3}$ with storage needs of $n(m p)^{2}+n^{2}$, assuming that the data are overwritten.

The flop count for GMRES is higher than for the Bartels-Stewart algorithm; however, the extra computations generally yield smaller residual errors. The two expensive steps in the GMRES algorithm are (i) the repeated solution of the Lyapunov equation in (61) for M_{j}; and (ii) the construction of the unknown elements in X_{j} and D_{j}. Finally, we observe that the GMRES algorithm consists of n independent constructions which are combined using (59) and $X=\sum_{i=1}^{n} \rho_{i} X_{i}$ to yield $X_{m}^{G M}$. This structure makes the algorithm suitable for parallel implementation. The large difference in CPU times between the Arnoldi based technique and the GMRES motivate the search for numerically efficient solvers for (36).

Example 2. In this example, we have chosen $A \in \mathcal{R}^{N \times N}$ and $B \in \mathcal{R}^{N \times p}$, where $N=200$ and $p=4 . A$ is a diagonal matrix with its first 100 elements uniformly

Fig. 2. Evolution of $\left\|R_{m}\left(X_{m}\right)\right\|_{F}$ for Arnoldi and GMRES methods for increasing $m p$.
distributed in the interval $\left[\begin{array}{ll}0 & 1\end{array}\right]$ by taking $a_{j j}:=(j+1) /(0.5 N+1)$, while the second 100 elements are distributed between [910] by taking $a_{j j}:=9+(j+1) /(0.5 N+1)$. The B matrix has the form given in (87) in which J is a vector of ones in $\mathcal{R}^{\frac{N}{4}}$ and J_{1}, J_{2}, J_{3}, and J_{4} are as defined in Example 1. Figure 2 shows the evolution of the residual error norm of the Arnoldi and GMRES methods for increasing rank of P_{m}. We make the following observations: the Arnoldi error is larger than that of GMRES as predicted and both exhibit nonincreasing profiles although the theory predicts this behaviour only for GMRES. The main point of this example is to illustrate that there is no apparent degradation in the algorithms' performances when A is a nonnormal matrix.
6. Conclusions. In this paper we have presented and tested two numerical techniques for calculating low-rank approximate solutions to large Lyapunov matrix equations. We have given simple expressions for the residual error norms of the Arnoldi and GMRES that are useful as stopping criteria in any practical implementation. Of the two methods proposed, we regard GMRES as the superior in view of its minimum residue norm property; however, this is achieved at the expense of more calculation as reported in $\S 5$. We have proposed an algorithm for the solution of block GMRES linear matrix equations that exploit the block-Hessenberg structure of A_{m}. We have carried out some simple extensions that address the approximate solution of large discrete Lyapunov and algebraic Riccati equations. Throughout this paper, we have opted to use block schemes to retain generality. The results and algorithms presented here are in matrix form of which scalar (vector) instances are special cases.

Many questions remain unanswered and more effort is required in order to better understand the performance characteristics of these methods. Some open questions that we will continue to investigate are the following.

- Is X_{m} updatedable in a cheap way?
- Is there a simple connection between the Arnoldi and GMRES solutions as was found in [5]?
- What are the inertia properties of $X_{m}^{G M}$?
- What are good starting matrices for the GMRES linear equation solver?
- Is preconditioning possible?

Acknowledgment. The authors wish to thank Youcef Saad for sending them a preprint of [27]. We would also like to extend our thanks to David J.N. Limebeer for directing our attention to the topic of this paper.

REFERENCES

[1] M. M. M. Al-Husari, B. Hendel, I. M. Jaimoukha, E. M. Kasenally, D. J. N. Limebeer, and A. Portone, Vertical stabilisation of Tokamak plasmas, 30th Conference on Decision and Control, Brighton, England, 1991.
[2] M. Athans, Matrix minimum principle, Info. Control, 11 (1968), pp. 592-606.
[3] R. H. Bartels and W. Stewart, Solution of the matrix equation $A X+X B=C, C o m m$. ACM, 15 (1972), pp. 820-826.
[4] D. L. Boley and G. H. Golub, The Lanczos-Arnoldi algorithm and controllability, Syst. Control Lett., 4 (1984), pp. 317-327.
[5] P. N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 58-78.
[6] P. N. Brown and A. C. Hindmarsh, Matrix free methods for stiff systems of ODEs, SIAM J. Numer. Anal., 23 (1986), pp. 610-638.
[7] P. N. Brown and Y. SaAd, Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 450-481.
[8] H. C. Elman, Y. Saad, and P. E. Saylor, A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 840-855.
[9] C. W. Gear and Y. SaAd, Iterative solution of linear equations in ODE codes, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 583-601.
[10] K. Glover, All optimal Hankel norm approximations of linear multivariable systems and their \mathcal{L}^{∞} error bounds, Internat. J. Control, 39 (1984), pp. 1115-1193.
[11] K. Glover, D. J. N. Limebeer, J. C. Doyle, E. M. Kasenally, and M. G. Safonov, A characterisation of all solutions to the four block general distance problem, SIAM J. Control Optim., 29 (1991), pp. 283-324.
[12] G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, MD, Second ed., 1990.
[13] G. Hewer and C. Kenny, The sensitivity of the stable Lyapunov equation, SIAM J. Control Optim., 26 (1988), pp. 321-344.
[14] N. J. Higham, Perturbation theory and backward error for $A X-X B=C$, IMA Preprint \#993, April 1992; BIT, 33 (1993), pp. 124-136.
[15] A. S. Hodel, Least squares approximate solution of the Lyapunov equation, 30th Conference on Decision and Control, Brighton, England, 1991.
[16] A. S. Hodel and K. R. Polla, Numerical solution of very large, sparse Lyapunov equations through approximate power iteration, 29th Conference on Decision and Control, Honolulu, Hawaii, 1990.
[17] J. L. Howland and J. A. Senez, A constructive method for the solution of the stability problem, Numer. Math., 16 (1970), pp. 1-7.
[18] D. Y. Hu and L. Reichel, Krylov subspace methods for the Sylvester equation, Linear Algebra and Appl., 174 (1992), pp. 283-314.
[19] A. J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Auto. Control, AC-24 (197), pp. 913-921.
[20] A. J. Laub, M. T. Heath, C. Paige and R. C. Ward, Computation of system balancing transformations and other applications of simultaneous diagonalisation algorithms, IEEE Trans. Auto. Control, AC-32 (1987), pp. 115-122.
[21] J. LaSalle and S. Lefschetz, Stability of Lyapunov Direct Methods, Academic Press, New York, 1961.
[22] B. C. Moore, Principal component analysis in linear systems: controllability, observability and model reduction, IEEE Trans. Auto. Control, AC-26 (1981), pp. 17-31.
[23] Y. SaAd, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comput., 37 (1981), pp. 105-126.
[24] ——, Practical use of some Krylov subspace methods for solving indefinite and non-symmetric linear systems, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 203-228.
[25] -, Numerical solution of large Lyapunov equations, in Signal Processing, Scattering, Operator Theory and Numerical Methods, M. A. Kaashoek, J. H. Van Schuppen, and A. C. M. Ran, eds., Birkhäuser, Boston, MA, 1990, pp. 503-511.
[26] ——, Krylov subspace methods on supercomputers, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 1200-1232.
[27] - Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 29 (1991), pp. 209-228.
[28] Y. SaAd and M. H. Schultz, GMRES: A generalised minimum residual algorithm for solving non-symmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869.
[29] M. G. Safonov and R. Y. Chiang, A Schur method for balanced model reduction, Proceedings of the American Control Conference, Atlanta, GA, June 1988.
[30] G. Starke and W. Niethammer, SOR for $A X-X B+C$, Linear Algebra Appl., 154-156 (1991), pp. 355-375.
[31] E. L. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett., 1 (1988), pp. 87-90.
[32] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.

[^0]: * Received by the editors March 2, 1992; accepted for publication (in revised form) January 24, 1993.
 \dagger Interdisciplinary Research Centre for Process Systems Engineering, Imperial College, Exhibition Road, London SW7-2BY, England (e-mail: jaimouka@ps.ic.ac.uk and kasenall@ps.ic.ac.uk)

