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KRYLOV SUBSPACE METHODS FOR SOLVING LARGE
LYAPUNOV EQUATIONS*

IMAD M. JAIMOUKHAt AND EBRAHIM M. KASENALLYt

Abstract. This paper considers several methods for calculating low-rank approximate solutions
to large-scale Lyapunov equations of the form AP+PA +BB 0. The interest in this problem stems
from model reduction where the task is to approximate high-dimensional models by ones of lower
order. The two recently developed Krylov subspace methods exploited in this paper are the Arnoldi
method [Saad, Math. Comput., 37 (1981), pp. 105-126] and the Generalised Minimum Residual
method (GMRES) [Saad and Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869]. Exact
expressions for the approximation errors incurred are derived in both cases. The numerical solution
of the low-dimensional linear matrix equation arising from the GMRES method is discussed and an
algorithm for its solution is proposed. Low rank solutions of discrete time Lyapunov equations and
continuous time algebraic Riccati equations are also considered. Throughout this paper, the authors
tackle problems in which B has more than one column with the use of block Krylov schemes.
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1. Introduction. In this paper, we focus on low-rank approximate solutions of
large Lyapunov matrix equations

(I) AP + PA’ + BB’ O, A, P TNN and B T,Np

in which N is large (typically greater than 200) and p << N. Lyapunov equations
play an important role in control and communications theory. They arise naturally
in /o optimal control theory [11], system balancing [20], [22], stability analysis of
dynamical systems [21], and model reduction of linear time invariant systems [22],

The need for model reduction arises in many areas of engineering, where high-
order mathematical models are used to describe complex dynamical behaviour. These
occur whenever models are described by partial differential equations that culminate
in large, linear finite element models. For practical reasons, it is desirable to replace
these high-order models by low-order approximations; for example, in control system
applications, high-order models may result in high-order controllers and the subse-
quent implementation of these controllers is cumbersome and expensive. Consider a
stable linear state-space model of the form

2(t) Ax(t) + Bu(t),
y(t) Cx(t) + Du(t),

in which x(t) is the state vector of dimension N, u(t) is a control vector of length p,
and y(t) is the output vector of length q. The matrices A, B, C, and D are real with
their dimensions fixed by those of x, u, and y. The associated transfer function is
given by G(s) C(sI- A)-IB / D. The task of any model reduction algorithm is
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to find an approximate stable model

(4) 5ok(t) Akxk(t) + Bu(t),
(5) y(t) Cx(t) + Du(t),

in which xk(t) E T, with k << N and the low-order transfer function is given by
Gk(s) Ck(sI- Ak)-IB + Dk. Well-established model reduction methods such
as optimal Hankel norm [10] and balanced truncation [22], [29] begin by solving the
linear matrix equations

(6) AP + PA + BB 0

and

A’Q + QA + C’C O,

which have unique solutions if and only if A(A)+ j(A) # 0 for all i,j. The requisite
for P and Q stems from the easily computable :oo error bound [10]

N

(8) JIG(s)
k+l

1/2where the ai’s are the Hankel singular values of G(s) defined as ai Ai (PQ) and
arranged in decreasing order of magnitude.

The low-rank approximate solution to large Lyapunov equations has received only
modest attention; the references [1], [15], [16], and [25] are to the authors’ knowledge
the only available literature on the topic. In the case of low-dimensional problems
(for N _< 50) there are numerous solution techniques based on iterative approximation
methods, numerical integration, Kronecker matrix products, Jordan decompositions,
and eigenvalue decompositions. Of these various procedures, the Bartels-Stewart
algorithm [3] is probably the most efficient and widely used. The Bartels-Stewart
algorithm transforms A into a real Schur form H UAU in which U is orthogonal
and H is quasi upper-triangular. This gives

(9) H + H’ + U’BB’U O,

in which P UPU, and this equation is easily solved by back substitution. Unfortu-
nately, none of these methods are suitable for solving large Lyapunov equations, since
the computation time and storage requirements are prohibitive. The Schur decompo-
sitions of sparse matrices are dense in general as are their orthogonal transformation
matrices. Furthermore, their respective solutions P and P in (1) and (9) will gener-
ally be dense even when A is diagonal. To remedy this situation, this paper presents
algorithms that compute approximate solutions to (1) for large A and low rank B.
Our approach is based on the work of Shad [25], which uses classical Krylov subspace
techniques.

Krylov subspace techniques are a class of iterative methods that are playing an
increasing role in the solution of numerous scientific problems. Originally proposed
for the solution of large eigenvalue problems, they have successfully found their way
into a variety of applications in the areas of control theory, computational chemistry,
and physics. Much of the theoretical research on the applications of Krylov subspace
techniques relates to the solution of linear systems of equations Ax b [8], [23],
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[28] with recent extensions to nonlinear systems [7] employing hybrid schemes and
ordinary differential equations [6], [9]; a good survey of recent research activity in
this area with an emphasis on supercomputers may be found in [26]. In [25] Shad
considers the low-rank approximate solutions to (1) in which p 1; this paper extends
his work to the general case via the use of block schemes and gives an expression for
the corresponding residual error. We subsequently address the problem of computing
a low rank approximate solution to (1) which meets an optimality condition. The
GMRES method we consider minimises the Frobenius norm of the error for which we
also give an exact expression.

Recently, several researchers have proposed alternative iterative methods for the
approximate solution to large Sylvester equations of the form AX -{- XB -C. In
[31], the Alternating-Direction-Implicit (ADI) iteration is applied to refine an initial
approximate solution. The block Successive Overrelaxation iterative method may also
be used to iteratively refine an initial approximate solution; this idea was first proposed
by Starke and Niethammer [30]. Both the ADI and SOR methods do not necessarily
yield low-rank approximate solutions; consequently, storing and manipulating the
solution may be expensive.

In [18], Hu and Reichel consider low-rank approximate solutions to Sylvester
equations. Their technique is similar to ours and was developed independently. Their
Galerkin method produces a low-dimensional Sylvester equation whose solution is used
to build a low-rank approximation, while the GMRES method yields a large system
of linear equations via the use of Kronecker tensors. The main difference between [18]
and the results presented in this paper is that our computations are performed in the
low dimension and expressions for the residual errors are provided.

Section 2 describes the type of approximations employed and studies the Arnoldi
and GMRES methods, deriving exact expressions for the errors incurred in both
schemes. Section 3 considers the practical problem of solving the linear matrix equa-
tion arising from the GMRES method. Section 4 employs the solution techniques pre-
sented in 2 to give low-rank solutions and residual error expressions for the discrete
Lyapunov matrix equation and for the continuous time algebraic Riccati equation.
Two illustrative examples in 5 show how the Lyapunov solvers behave in practice,
and finally, some concluding remarks are given in 6.

2. Krylov subspace techniques. The purpose of this section is to establish the
type of low-rank approximation used throughout this paper. Based on this choice,
we describe the Arnoldi and GMRES methods and give a full error analysis for each
case

In practice, solutions to large Lyapunov equations (1) frequently admit good low-
rank approximations, in addition to which one is generally interested in computing
only the dominant eigenspace of the solution P*, rather than P* itself, since the
dominant eigenspace of P* is known to be associated with the dominant modes of
the system described by (2) and (3) [201. Ideally, we would therefore like to compute
a rank m approximation Pm, where m << N such that liP*-PmllF is minimised.
Throughout this paper we shall make use of the Frobenius norm defined as IIZIIF
v/ir(ZZ’) in which Z’ denotes the transpose of Z.

Consider the Schur decomposition of P* given by P* UZU in which U E
rNN is an orthogonal matrix and diag{al, a2,..., aN} is a matrix of eigenvalues
ordered such that lall

_
la21 _>... lagl >_ O. Then the optimal rank m Frobenius norm
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approximation of P* is given by

, o ] U’=V,,nV’,(10) Pm U
0 0

where Y-,m -diag{al,a2,...,am} (i.e., the first rn diagonal elements of ) and U, E
7gxm is the first m columns of U. In [25] a low-rank approximation is computed by
choosing an orthogonal matrix Vm Tg’ and calculating the exact solution Xm
to the reduced-order Lyapunov equation

(11) (VAVm)X,-, + X,(VA’Vm) + VBB’Vm O.

The estimate of P* is then given by Pm VmXmWm. Compared with the optimal
approximation given in (10), it is apparent that to compute a good estimate of P*, Vm
must be an accurate approximation of Urn, or in other words, the m most dominant
eigenvectors of P*. Unfortunately, minimising lIP* Pm lie is intractable when P* is
unknown.

We will therefore turn our attention to the problem of selecting Vm and Xm. Let
Km be the rap-dimensional Krylov space defined as

(12) gm span {IS AS A2B Am-IB]}
then following [25], we will select Vm to be an orthogonal basis of Kin. Throughout
the remainder of this paper, we will exploit approximations to the solution P* which
have the form

(13) Pm-" VmXmVm,

where Xm ,x, is an arbitrary symmetric matrix. The key point here is that
even though Pm TNxN, it may be efficiently stored as the product of smaller
matrices Vm 7gxm’ and Xm R.m’xm’. We observe that Pm is symmetric for
symmetric Xm and rank(Pro) rank(Xm) _< mp.

The remainder of this section is devoted to the appropriate selection of a symmet-
ric Xm. We begin by defining the residual error function associated with a particular
choice of Xm as

(14) Rm(Xm) :- A(V,X,V) / (V,X,V)A’ / BB’.

The solution techniques presented in this paper are based on seeking a symmetric
Xm so as to give Rm(Xm) desirable properties. Section 2.1 addresses the problem
of constructing X,n such that Rm(X,) has an orthogonality property with respect
to gm and gives a computable expression for [[Rm(Xm)[[F. Section 2.2 deals with
finding a symmetric Xm which minimises I[Rm(Xm)[[F for which a simple expression
is also derived.

2.1. The Arnoldi method. Next we use the well established Arnoldi algorithm
[32] to calculate an orthonormal basis Vm for the Krylov subspace Kin. The basic
outline of a block Arnoldi process is given next.

Arnoldi process.
Compute B QIR1 and set pl := number of columns of Q1 (QR factorisa-
tion).
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* Doj 1,...,m.
(a) Set Vj [Q1 Q2"’" Qj].

Alj
A

(b) Compute V]AQ..

(c) Qj+IAj+I,j AQj -Jk=l Q:Akj (QR factorisation)
and pj+l :- number of columns of Qj+I.

End Do.

In practice, it is advisable to compute the QR factorisations of the Arnoldi process
via the Gram-Schmidt (GS) or modified Gram-Schmidt (MGS) orthogonalisation
processes. A brief description of such a factorisation process is given next; column
partition B asB [bl, b2,..., bp]; then

Step 1: hal-bl, ql-nq,/llnqll2,
Step 2: ha2-b2 -(qlb2)ql, q2

k-1St pk:
construct the orthogonal matrix Q1 [ql q2 qp], and finally, define the upper
triangular matrix R1, where

(15) R1 0

0

Poor numerical properties of the GS method make it necessary to occasionally employ
the MGS approach, which is a rearrangement of the calculations outlined above [12].
The main point we wish to highlight is that to effect the QR factorisation of B in this
setting, one only needs to construct an orthogonal basis Q1 of B such that Q1 E 7vp

and an upper-triangular matrix R ,pXp.
In the case that B does not have full column rank, GS and MGS do not generally

yield an orthogonal basis for B. The QR factorisation is then given by

BII [(1 (2][ /110
in which 11 is upper-triangular and H is a permutation matrix. In such a situation,
we set Q (1 and R1 [/1 /12]H’. Finally, pl :- rank(Qi) rank(B), and
hence V has only p columns. Similarly, the QR factorisation of AQ. --,k=l QkAk.
in the main loop of the Arnoldi process is given by

in which we set

(17) Qj+I (1 and
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We observe that the upper-triangular structure of/jl is lost since H permutes the
columns of [/jl /j2]. The matrices R and Aj+,j are nonsquare and will have row

rank ofp and pj+ respectively. We refer to any rank drop in B or AQj--k=I QkAkj
as a curable (or partial) breakdown since it does not adversely affect the Arnoldi
process if tackled in the manner just described. For the most part, we will assume
that this type of breakdown does not occur; consequently, m steps of the Arnoldi
process generate Vm E ’N rap.

By construction, the algorithm above produces an orthonormal basis Vm [Q Q2
Qm] for the Krylov subspace Kin. Defining the mp mp block upper-Hessenberg

matrix A, as

(18) A,

it is easy to verify that

(19) AV. V,A + Q.+Am+,mE

and

(20) A, VAV,,

where Em is a matrix of the last p columns of the mp identity matrix.
Remark 2.1. Boley and Golub [4] give a similar treatment of the block Arnoldi

process; however, their algorithm computes an orthogonal basis of the entire control-
lable subspace (i.e., the Krylov space K(A, B)), the construction of Am is carried out
using (20) rather than by the Arnoldi process and finally, they do not consider (19).
In our algorithm, we use their implementation of (16) for the updates given in (17).
This ensures that (19) is satisfied.

If we set Bm [RI 0p/]’ where p(m- 1), then B VmBm, the residual
error (14) is then given by

(21) R(X,) := A(V,X,V) / (V,X,V)A’ + YmB,BY.

Substituting (19)into (21) gives

[ A,Xm + XmA + BmB X,EmA+,mR, X, y+ [ A,+.,EX, 0 J
where Vm+ [Vm Qm+l]. The Arnoldi-Lyapunov solver considered in this subsection
seeks a symmetric Xm by imposing the condition that the residual error Rm(Xm) has
an orthogonality property with respect to Kin; we can state the problem we wish to
address as follows.

PROBLEM 2.1. Find an approximate solution P, :-- VmXmWm that satisfies the
Galerkin type condition VmRm(Xm)Vm -O.

The following theorem is the main result of this subsection and gives the solution
to Problem 2.1.
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THEOREM 2.1. Suppose that m steps of the Arnoldi process have been taken and
that the residual error is defined by (21); then if Ai(Am) -k j(Am) O, for all i, j,

(a) V.mRm(Xm)Vm 0 if and only if Xm XAm, where xA satisfies

(23) A! B.B=O;AmXAm + XmAm +

(b) If the conditions of (a) are met, then the residual error norm is given by

(24) :._ AI[RAm[IF IIRm(XAm)IIF llAm+l,mSmXmllF

Proof. Pre- and post-multiplying (22) by Vm and Vm, respectively, gives

X V.’ [ AmXm + XmAm + B,SmV;R( )Y Y+ A.+,E’X

I 0] [ AmXm+XmAm+BmBmAm+l,mEmXm

AmZm + X,Am + SmBm,

since Vm+i [Vm Qm+l] is part of an orthogonal matrix. The result follows immedi-
ately, establishing the proof of part (a). Substituting (23) into the (1,1) block of (22)
gives

(25) RA := R(XmA) Vm+l [ 0 XAmEmAm+l,m]y.,A m+lAm+l,mEmX, 0

IIR IIF (tr(XAmEmAm+l,mAm+l,mEnXAm) + tr(Am+l,mEmXmXmEmAm+l’ A A ,m)

]XmEmAm+l’m Vm/lVm0

XmE,A+l,m o]

x/v[tr(XAmEmAtm+l,mAm+l,mEtmXAm)
A(26) /IIA.+I,,E.X.]IF,

since Vm+l is part of an orthogonal matrix that completes the proof.
An implication of the above result is that as m is increased, the residue is confined

to a progressively smaller and smaller subspace of TN. This, however, does not
imply that the Arnoldi will produce a sequence of nonincreasing residual error norms.
The residual error norm in (24) provides a useful stopping criterion in a practical
implementation of the algorithm; it allows one to economically evaluate the error
norm and gauge the quality of the low rank approximation. The key points here
are the following. Firstly, (23) is a Lyapunov equation of dimension mp, which can
be solved accurately using the Bartels-Stewart algorithm [3]; secondly, Pm may be
efficiently stored as the product of low-order matrices; and thirdly, the residual error
norm does not require the computation of the approximate solution Pm at each step,
instead (24) is computed via low-dimensional matrix products. Finally, we mention
that Re(Ai(Am)) < 0 is guaranteed whenever A / A’ < 0. The complete algorithm
may now be summarised in the following procedure.

Arnoldi-Lyapunov solver.
Start" Specify a tolerance e > 0, set an integer parameter m., and, set k 0
and m := ml.
The Arnoldi process:

1. Compute B Q1R1 (QR factorisation).
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2. Do j k / 1, k + 2,...,k
(a) Set V- [Q Q2"’" Q].

Alj
Au

(b) Compute V]AQ.

(c) Qj+Aj+,j AQj -]k= QkAki (QR factorisation).
End Do.

Find the symmetric XA which uniquely satisfies the low-order Lyapunov
equation A,XA /XAA’ / S,S’m 0.

ACompute ]]RAm]IF :-- %/f[IAm_l,mEmXml]F.
* Stopping test: If IIRAmlIF > e, set k k -t-m, m k + m and go to step

2 of the Arnoldi process.
Form the approximate solution: P, :- V,XAmWm.

Remark 2.2. Computing the residual error norm IIR II at the end of each
Arnoldi process iteration requires (mp)3 floating point operations and 2.5(rap)2
words of storage [12]. As mp increases, the cost of calculating XmA becomes excessive,
to counter this, the procedure above introduces the variable ml (typically 3 or 4)
which translates into the residual error norm being evaluated every m iterations
of the Arnoldi process. Note that in the stopping test, m is the total number of
iterations.

It is important to note that the algorithm converges in at most mod(N/p) + 1
steps using exact arithmetic (provided no curable breakdown occurs), at which point
it yields the exact solution P*. The point we wish to make here is that in prac-
tice, accurate solutions may be computed for mp significantly smaller than N. The
problem therefore rests with establishing theoretical error bounds for liP*-Pro liE,
which would be useful in selecting an integer value for m to give a good approximate
solution.

A drawback of the algorithm above is that as m increases, manipulations with
Vm become expensive and storage requirements become excessive. One way to avoid
this type of buildup is to truncate the orthogonalisation process by forcing the new
Qm+ to be orthogonal to only the last columns of Vm, where is a user specified
integer parameter. The resulting block Hessenberg matrix A, is block-banded with
a superdiagonal bandwidth 1. An advantage of implementing such an incomplete
orthogonalisation process is that it requires only the storage of the last columns
of Vm; for further details we refer the reader to [6], [23], and [24]. Unfortunately
the simple formula of (24) no longer holds when incomplete orthogonalisation is in
service, making it difficult to gauge how well the method is performing on a particular
problem.

In [14], it is shown that numerical methods for solving (1) suffer from numerical
instability; in particular, no numerical method will be backward stable. The following
result gives one perturbation of the data in (1) for which the low-rank solution given
in Theorem 2.1 is an exact solution.

COROLLARY 2.2. Suppose that m steps o.f the Arnoldi process have been taken and
let P, :- VmXAmV’ be the low-rank approximate solution of (1), where xA satisfies
(23). Then

(27) (A- A,)P, + Pm(A- Am)’ + BB’ O,
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where Am Qm+lAm+l,mQm and
Proof. Substituting Xm :- XmA into (21) and using (25) gives

(28)

Equation (27) follows by rearranging (28) and noting that E Qm -. The expres-
sion for IIAmlIF follows from the fact that Qm and Qm+l are parts of an orthogonal
matrix. Finally, observe that Am is at most a rank p perturbation.

2.2. The Generalised Minimum Residual method (GMRES). In this sec-
tion we address the problem of computing an approximate solution to (1) that meets
some optimality condition. The method we propose is based on finding a symmetric
Xm that minimises the norm of the residual error R(Xm). We have termed this a
Generalised Minimum Residual method (GMRES), as it is based on a similar idea
of Saad and Schultz [28], developed in the context of solving linear systems. The
problem we would like to solve can be stated as follows.

PROBLEM 2.2. Find a symmetric Xm E T’raprap that minimises the residual
error norm, namely,

:= min
X,=X’,

AmXm + XmA + BmBVm+ Am+l,mEmXm XmEmAm+l’mo ] Vm+l
DEFINITION 2.1. The solution of Problem 2.2 relies on the following definitions:
(a) Let vj denote the jth column of the matrix V Tnm and vec(V) be

defined as

(29) vec(V)-- v v vn ]’e nnm;
(b) A (R) B denotes the Kronecker product of matrices A Tkxt and B TVnxm;

and is the matrix whose (i, j) block is aoB.

(30) A (R) B aoB T(kn)xqm)

from which we, deduce

fori-ltok and j--ltol,

(31)
(32)
(33)
(3a)

vec(ABC) (C’ (R) A)vec(B),
vec(A)’vec(B) tr(A’B),

(A (R) B)(C (R) D) (AC (R) BD),
(A(R)B)’=A’(R)B’.

The following theorem is the main result of this subsection and gives the solution to
Problem 2.2.

THEOREM 2.3. Suppose that m steps of the Arnoldi process have been taken and
that the residual error is given by (22), then if )ti(Am) + Aj(Am) O, for all i,j

(35) IIR MII v/tr(Bm(AmXM + X-amMAm + BmB)Bm),
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where XGmM satisfies the rap-dimensional linear matrix equation

Am(AmXGmM + XGmMAim + BmBm) + (AmXGmM + XGmMA + BmBm)Am
(36) GM GM Am+l,mA.+l,mE. O.+EmA.+I,.A.+I,.E’.X. /X Em

Proof. The first part of the proof will establish that XM satisfies the linear
matrix equation (36), while the residual error norm given in (35) is derived in the
second part.

Starting with (22), we have

IIR(X)llF tr ([AmXm + XmA= + SmB]2)
(37) + tr (XmEmA+l,Am+l,mEXm)

+ tr (Am+l,mEXmXmEmA+l,m)
since Vm+l is pt of orthogonal matrix. Using (31) d (32) of Definition 2.1,

(as) II(x)l12F [(I @ Am + Am @ I)vec(Xm) +
X+ll(/ A+,E)ve( )ll + (A+,E /)vec(X)[[

E’ vec(X) + Ox(39) I A+,
E’ @ I 0pxAm+l,m m 2

(o) + 2

with a one-to-one correspondence between (39) and (40).
Since (40) is a least squares problem, it follows that its minimum is achieved

when

(41) ’(+) 0

[12]. Substituting the terms of (39) into (41) and using (33) and (34) yields

(4)
(I (R) g. + A. (R) I)’ ((I (R) Am + Am (R) I)vec(Xm) + vec(B.S)}

E)vec(Xm) + (EA+,Am+,E @ I)vec(X) 0.+ (I @ EA+,A+,
Using (31) and (34),

(43) 0 (I @n +A @ I)’ vec(AX +XA + SmB)
+vec(EmAm+l,mAm+,mEXm) + vec(XmEmAm+l,mAm+,mE)

(44) 0 A(AXm +XA +BB) + (AXm +XA +BmB)A
Am+l,mE+ EA+,mA+,EXm + XmEA’m+l,m

which is the line matrix equation given in (36). This completes the proof of the first
pt.

Suppose XM satisfies (36); then substituting tr(XM x (36)) into (37), and
using the property tr(AB) tr(BA) followed by some algebra, we get that

(45) IIII=
F tr (B(AmXM + X_MA + BmB)Bm)
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from which (35) follows, thereby completing the proof. D
Remark 2.3. In the proof above, we have elected to use the Kronecker tensor

approach because of the close parallel it shows with GMRES la Saad and Schultz
[28]. Since the Frobenius norm of the residue Rm(Xm) is expressed as

]IRm(Xm)]I2F tr(R.(X.)R.(X.)’);
an alternative way to establish (36) is to use trace differentiation as defined in [2].

COROLLARY 2.4. XGmM satisfies the mp-dimensional linear equation (36) if and
only if the solution residue RmM satisfies the Galerkin type condition

(46)

Proof. Substituting (22) into the left-hand side of (46) gives

(47)

V’A’[V +]
.-m m Am+BmBm "m m.Xm+l,m

t GM Ym
m+l,mmm 0 m+l

+y[y Q+]
AX + __ __ + BmB +, Ag.

Am+l,mm"m m+l

Substituting (19) into (47) followed by some simple algebra yields

(48)
+

[A E, [ VM xVMA, BmB ]A+t, AX +__ __+
t GMAm+l,mm-m

+[AmXM+GMA, +BmB yGM at [ Am ]-- -- "’ ’+, A+,E
The right-hand side of (48) is the mdimensional linear matrix equation given in
(36). The result follows immediately.

This corolly shows that an equivalent way of posing the GMRES problem is
to determine an approximate solution P := VXV that meets the Galerkin type
condition V(A’(X) + (X)A)Vm 0. The complete GMRES-Lyapunov
algorithm is summarised in the following procedure.

GMRES-Lyapunov solver.
Stt: Speci a tolerance e > 0, set an integer pameter m, and, set k 0
and m :=
The Arnoldi process:

1. Compute B Q1R1 (QR factorisation).
2. Do j k + 1, k + 2,...,k +m.

() st [ ...].
A
A2

(b) Compute AQj.
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(c) Qj+IAj+I.j AQj ,Jk= QkAkj (QR factorisation).
End Do.

Find the symmetric XamM which uniquely satisfies
Am(AmXGmM + XGmMA + SmBm) + (AmXM +XMA + StuBS)Am +

wGM GMEm x A+.mAm+,mm..m + Xm EmAm+I.mAm+.mE O.
Compute ]]RM]IF "= tr(B/at..mXGMm +XMA + BmB)Bm.)
Sto,,in test" I* > set := + := + a.a to ste,
2 of the Arnoldi process.

v yGMIztForm the approximate solution: Pm := m--m "m"

Suppose that m steps of the Arnoldi process e taken, then under certain condi-
tions, the right-hand side of step (c) may be zero. In such a situation, Qm+ cannot
be calculated and consequently, the algorithm terminates prematurely, yielding

(49) AV, V,A,.

This type ofbreakdown is referred to as happy breakdown [27] and takes place when the
span of Vm is invariant with respect to A. The exact solution may thus be computed.

COROLLARY 2.5. In the event of happy breakdown after m steps of the Arnoldi
process, Arnoldi and GMRES yield the same solution, namely, the exact solution P*.

Proof. Substituting (49)into (21) gives R(Xm) Vm(AmXm -X,Am +
B,Bm)V. In the case ofArnoldi, VR(X,)V, 0 : A,xA+XAA+B,,Bm
0, while in the case of GMRES, it is clear that minllt(Xm)llF 0 from which
it follows that A,XGmM +-YaMA-,--m + B,Bm 0. Arnoldi and GMRES have a
solution residue RAm RamM 0, and exact solutions P* Pm vmXAmVm
vxv’.

If, on the other hand, the right-hand side of step (c) is "small," it becomes difficult
to construct Qm+, which is orthogonal to Vm. Wilkinson [32] recommends reorthog-
onalising the newly computed Qm+ which, although expensive, yields a [Vm Qm+l]
orthogonal to within working precision.

The following corollary gives theoretical bounds on the quality of the approximate
solution for Arnoldi and GMRES, which are specialisations of those in [13].

COROLLARY 2.6. Suppose that m steps of the Arnoldi process are taken and that
+max(A + A’) < 0; then

II AExII <
VIIAIIFIIBII2 IIA’+"

F

< -IIAIIF A

--17111BII 2 IIAm+l’mEmX]lF
F

.for the Arnoldi, and

(50)

(51)

I,I v/tr(B(A.XM + (aMA, + B.B)B.) < liP*
4IIAIIFIIBIIF "- "- IIP*IIF

liP* PIIF < IIAIIF tr(B(AmXM TXMA T BmB)Bm)]P* IF ]]]B]]2
F

.for GMRES, where I1-- -Amx(A-t-A’)/2 is the logarithmic norm of A [12].
in this section, we have presented two methods for computing low-rank approx-

imate solutions to large-scale Lyapunov equations. The first method computes an
approximate solution Pm VmXmVm such that VR(X,)V, 0, while the second
minimises IIR,(Xm)IIF. Finally, simple expressions for the residual error norm are
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derived in each case. In the above discussion we have not alluded to any practical
way of solving (36). This is the object of the next section, where we will consider
a solution technique for the mp-dimensional linear matrix equation arising from the
GMRES method.

3. The GMRES linear matrix equation. In this section we present an algo-
rithm for the solution of the linear matrix equation given in (36). Since A, is block
upper-Hessenberg and B,Bm is banded and symmetric, we will show how to exploit
this rich structure to facilitate the calculation of Xm.

In an early paper, Howland and Senez [17] gave a simplified solution to the Lya-
punov matrix equation

(52) AX + XA’ + D O,

in which A is lower-Hessenberg and D is diagonal. In this development, we extend
and adapt their method to solve the linear matrix equation of (36) arising from the
GMRES problem. Throughout this section, we will set A := A,, D :-- BmBm. E is
the matrix of the last p columns of the rap-identity matrix and Am+l.m remains as
defined in 3. Finally, we will assume for the purposes of brevity that curable break-
down has not taken place during the first m iterations. In this simplified notation,
(36) may be rewritten as

(53)
A’(AX + XA’ + D) + (AX + XA’ + D)A + EAZ+.,A,+.,E’X
+XEA+,,A,+I,,E O.

nIn this section, the solution to (53) is derived as a linear combination X -]i= piX
Pfor n :==(rap + 1 i) linearly independent, symmetric matrices X where each

X is constructed to satisfy AXi + XA’ / D M for some banded symmetric De,
and symmetric Mi. Finally, the p’s are obtained by solving the nonsingular linear
system =1 pCD D. We start with the following definitions and preliminary results
needed to establish the main result of this subsection.

DEFINITION 3.1. A matrix Xi and a banded, symmetric matrix D of bandwidth
p- 1 [12] are called a GMRES pair with respect to A if they satisfy the linear matrix
equation

(54)
A’(AX + XA’ + D) + (AXi + XA’ + D)A + EAm+.,A,+I.,E’X
XiEA.+,.A.+,.E O.

LEMMA 3.1. If Ai(A)/j(A) # 0 for all i,j then (53) admits a unique symmetric
solution, X 0 if and only if D O.

Proof. If D 0, then (53) becomes

(55)
A’(AX+XA’) + (AX+XA’)A + EA+,,A,+.,E’X + XEA+,,A,+.,E’ O.

The vec form of (55) is given by

(56)

0 {(I (R) A’A) / (A (R) A’) + (A’ (R) A) + (A’A (R) I)} vec(X)
+ { (I (R) EA+I.,A,+,,E’) + (EA+.,A,+,,E’ (R) I)} vec(X)

[ I(R)A+A(R)I
[(I(R)A+A(R)I)’ (Am+.mE’(R)I)’ (I(R)Am+,mE’)’] Am+l.mE’(R)I vec(X),

I(R)A,+.m
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using the identities given in (33) and (34). It is well known that if Ai(A)/ Aj(A) = 0
for all i, j, then (I (R) A / A (R) I) is nonsingular [10]; consequently, the solution to
(56) is vec(X) 0 and therefore, the only solution to (55) is X 0. Conversely, if
X 0, then (53) becomes AD / DA O, which can only be true if D 0 since

+ X (A) # 0 i,j.
Consider n GMRES pairs (Xl,D1), (X2, D2),..., (Xn, Dn) with respect to A,

)-=1 piD) is also a GMRES pairthen for any constants pl,p2,.. Pn, (= pXi, n

with respect to A; therefore,

(sTl

i=1

Subring (ST) om (a) gives

A A X- piX + X- piXi A+ D- pD
i:1 i:1 i=1

+ A X- pX + X- piX A+ D- pDi A
i=1 i=l i=1

i=1

+ X pX EA+,A+,E O.
i=1

Lemma .1 sages gha X i= piXi if and only if D i= piDi. The solu-
tion to (ga) will be aken o have he form X i=1 piXi, for which we will give
constructions for Di, Xi, and Oi such ghag

(59) D piDi.

Matrices D and Di each have a bandwidth of p- 1, therefore, (59) h a unique
psolution if and only if (a) n "= i=l(mp + 1- i) and (b) D, D2,..., On are linearly

independent.
The construction of X relies on selecting the lt p columns (rows) of n Xi’s in

such a way that they are linearly independent. The following lemma shows that if the
n Xi’s are linearly independent, then so too are the Di’s.

LEMMA 3.2. g Ai(A) T Aj(A) 0 for all i,j, then, if X,X2,...,Xn and
D1, D2,. Dn are GMRES pairs, with respect to A, then when X, X2,. Xn are
linearly independent so are D1, D2,..., Dn.
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Proof. Suppose that D1, D2,..., Dn are linearly dependent, so that, for some
nconstants (l,a2,...,an, not all zero, i= aiDi 0, then substituting into (53)

gives

(6o)

which is uniquely satisfied by in__ aiXi 0 following Lemma 3.1, hence X, X2,...,
X, are linearly dependent. Since these are assumed linearly independent, the result
follows by contradiction. [:l

Lemma 3.2 shows that since the Xi’s are linearly independent by construction,
so too are the Di’s; consequently, (59) is a nonsingular system and the pi’s may be
uniquely determined. All that remains is to construct the unknown elements of Xi
and Di, which are given in the following result.

THEOREM 3.3. Assume that )i(A) + Aj(A) 0 .for all i, j; then there exists at
least n linearly independent GMRES pairs (X, D), (X,, Dn) with respect to A

Pwhere n ’i=1 (rap + 1 i).
Proof. Consider Xt, X2,..., X, symmetric matrices whose last p columns (rows)

have been selected as follows. Firstly, the n Xj’s have their last p columns (rows) set
to zero; then the first mp X’s each have their last column (row) set, respectively,
to the columns (rows) of the mp identity matrix; the next (rap- 1) Xj’s have their
(rap- 1)th column (row) set, respectively, to the columns (rows) of the (mp- 1)
identity matrix, etc. It is clear that this selection of the last p columns (rows) of Xj
leads to n linearly independent Xj’s since each of their last mp p, (p mp) blocks
are linearly independent. The key observation is that fixing the last p columns (rows)
of Xj fully determines the last two terms of (54) since E’X, (XE) is the last p rows

EXEA,+ A,+I,,(columns) of Xj Defining Qj :-- EAm+,mAm+,mE Xj + ,m
and substituting into (54) yields

(61) A’Mi + MiA + Q =0,

in which Mi := AXj / X.A’ + Dj; furthermore, (61) admits a unique solution Mj.
Substituting Mj into its definition gives

(62) AXj / XA’ / D Mj,

from which it follows that Xj satisfies (54) if it satisfies (62). We determine the re-

maining elements of Xj by considering the skew symmetric Ty and banded symmetric
Dj matrices defined by

(63) AX 1/2M T:i 1/2 Dj,
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it is clear that if the GMRES pair (Xj, Dj) satisfies (63), then it satisfies (62). It
will be shown by induction that the remaining unknown elements of Xy and the
elements of Dy and Ty may be derived uniquely by (63). When this is the case, the
Xy’s are clearly independent. So by Lemma 3.2, the Dj are also independent. Block
partitioning (63) gives

(m-k-1)p p p (k-1)p

(m-k-1)p All A12 A3 A14
p A2 A: As3 A4
p 0 A32 A33 A34

(k-1)p 0 0 A43 A44
MI M: MI

1 M2 M22 M23
2 M3 M3 M33

Mh Mh Mh(64)

Xll
x
xa
x4

M14
M24
Ma4
M44

X12 X13 X14
X22 X23 X24
z z z4
X4 X4 X44

Tll T12 T13 T14
-Th T T T
-Th -T T T
-Th -T -T T

Dr1 D12 0 0

D2 D22 D23 0
0 D3 D33 D34
0 0 D4 D44

Suppose that the last kp columns (rows) of Xy and the last (k- 1)p columns (rows)
of Tj and Dy are given. The following development shows that this is sufficient to
determine the remaining elements of Xj, Ty, and Dy. The blocks Xt2 and X22 may
be derived from the following blocks of (64)"
(65) (1, 3), T13 AllX13 4- A12X23 4- A13X33 4- A14X4 1/2M13,
(66) (3, 1), X12 -(X13A3 + X14A4 4- T13 1/2M13)(A2) -1,
(67) (2, 3), T23 1/2023 A21X13 4- A22X23 4- A23X33 4- A24X4 M23,1
(68) (3, 2), -T3 1/2D3 A32X22 4- A33X3 + A34X.i 1/2M3.
Adding (67) to the transpose of (68) gives

X22 (M23 X23A3 X24A4 A2X3 A22X23 A23X33 A24X4)(A32)-(69)
D23(A2)-1.

Since curable breakdown has not occurred during the first m iterations, Qy+lAy+,y
AQy -’=1 QkAky (step () of the Arnoldi process) has full column rank. Hence each
subdiagonal block of (18) is nonsingular by the construction in the Arnoldi process;
consequently, A32 is nonsingular. The only unknown in the right-hand side of (69) is

D23. Observe that Dy is banded; therefore, D23 is strictly lower-triangular, and since

A2 is lower-triangular, D23(A2)- is strictly lower-triangular. The upper-triangular
part of -(X23A3 4- X24A4 4- A21X13 4- A22X23 4- A23X33 4- A24X4 M23)(A2)-1
therefore determines the upper-triangular part of X22 and by the required symmetry
of Xy the lower-triangular part of X22. Substituting X22 into (69) yields D23; T23 is
then evaluated from (67). T33 and D33 are derived from

1D(70) (3, 3) T33 33 A32X23 4- A33X33 4- A34X4 M33,1
adding (70) to its transpose. Using the facts that Ty is skew symmetric and Dy and
My are symmetric gives

A(71) D33 (A32X23 4- A33X33 4- A34X4 4- X3A32 4- X33A3 4- X34 34 M33)
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Back-substituting into (70) finally yields T33. It follows by induction that fixing the
last p columns (rows) of Xj uniquely determines the remaining elements of Xj and
the elements of Dj and Tj. An important observation is that none of the calculations
changes the last p columns (rows) of Xj so that n repetitions with n linearly indepen-
dent Xj will generate n independent GMRES pairs (Xj, Dj) by Lemma 3.2, thereby
completing the proof. [

The solution to the linear matrix equation given in (53) may now be written as a
linear combination of n linearly independent GMRES pairs (X, D) obtained by the
construction of Theorem 3.3. The constants pl, p2,..., Pn are obtained by solving the
nonsingular system (59) and hence X -]in__l piXi is the required solution.

Remark 3.1. Suppose that d and dj are vectors of the jth super-diagonal ele-
ments of Di and D, respectively, for i 1,..., n, and j 0,...,p- 1. Then (59) may
be written as Lx- b, in which

(72)

L= E x= E Tn, andb=

p.

This linear system has a unique solution since the Di’s are linearly independent (by
Lemma 3.2).

The following procedure summarises the block solution of the GMRES linear
matrix equation (53).

Block GMRES linear equation solver.
Initialise by constructing n linearly independent matrices which are obtained
by forming the last p columns (rows) of Xj.
Doj=lton.

1. Form Qj := E,Am+I,mA,+I,mEmXj + XjEmA,+I,mAm+I,,En
and solve the Lyapunov equation AMj / MjA / Qj 0 for the
unknown Mj.

2. Dok-ltom-1
Partition X, A, and M as in (64) where the first (m-k)p x (m-k)p
block of X and the first (m- k / 1)p (m- k + 1)p blocks of Tj
and Dj are unknown.
Compute X2 from (64).
Compute the upper triangular part of X22 and symmetrise.
Compute T3, T23, and T33, and, D23 and D33.
End Do (k).

3. End Do (j).
Using Remark 3.1, solve the linear system n’= piD D to determine p.
Form the solution; X" -i=1 Pixi"

The residual error norm for the GMRES problem is given by

(73) [IR(XG M)I[F v/tr(Bm(A,XGM + XGMA, BmBm)Bm).

Evaluating equation (73) may be efficiently implemented without forming X//since-= piM AmXGmM -[- -xGM-m .A’_m + BmB’m" In such an implementation, the Dj’s



244 IMAD M. JAIMOUKHA AND EBRAHIM M. KASENALLY

may be stored as vectors while only the upper-triangular part of the Mj’s need be
stored. It must be pointed out that we require only that the starting matrices be
linearly independent and consequently, other starting matrices for Xj may be used to
compute the whole solution. In practice, the selection of these independent matrices
appears to affect the quality of the computed XmM. We have as yet not investigated
the conditioning of the linear system in (59).

Remark 3.2. Although n low-dimensional Lyapunov equations are solved in step
1, the transformation of A to Schur form need only be carried out once.

In this section we have presented an algorithm for solving the linear matrix equa-
tion arising from the GMRES method. This solver exhibits features that may be
exploited on parallel processors, this, together with update schemes, are topics of our
ongoing research. The conditioning of the linear system of equations in (59) is not
well understood and work continues on numerically enhancing this algorithm.

4. Extensions to other matrix equations. In this section we will show how
the Krylov subspace techniques considered above can be applied to two other large
matrix equation problems. The first is the approximate solution of large discrete-time
Lyapunov equations which arise in the model reduction of large models described
by first-order difference equations [10]. The second type of problem we address in
this section is the approximate solution to large continuous time algebraic Riccati
equations. Equations of this type arise in 7/, classical linear optimal control and
filtering theories, and spectral factorisation problems [11], [19]. As these extensions
are relatively straightforward, we will state the results without giving any proofs.

4.1. The discrete-time Lyapunov equation. Consider the discrete-time Lya-
punov equation

(74) APA P + BB 0

in which A, P E .NxN, B :RNxp, and, N is large and p << N. The Arnoldi process
then generates an orthogonal basis Vm for the Krylov space given in (12), and the
residual error for any approximate low-rank solution of the form Pm VmXmVm is
given by

(75) Rm(Xm) := A(VmXmVm)A (VmXmVm) + BB’.

Substituting (19)into (75) gives

(76)
AmXmAm Xm + BmBmR.(X.)=V.+ Am+l,mEXmAm

AmXmEmAm+’m ] V.’Am+l,mEmXmEmAm+l,m m+l

since VmBm= B. We then seek a solution Pm := VmXmVm by imposing the condition
that Rm(Xm) has an orthogonality property with respect to Kin.

PROBLEM 4.1. Find an approximate solution Pm :- VmXmVm that satisfies the
Galerkin type condition VmRm(Xm)Vm O.

THEOREM 4.1. Suppose that m steps of the Arnoldi process have been taken and
that the residual error is given by (76); then if I,)i(Am)(A(Am))-ll # 1 .for all i,j,

(a) VmRm(Xm)Vm 0 if and only if Xm xAm, where XAm satisfies

(77) A AAXmAm Xm + BmBm O.
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(78)

(b) If the conditions of (a) are met, then the residual error norm is given by

:= ll  (x )ll ]II .

Proof. The proof is essentially the same as that of Theorem 2.1 except that it
uses 76). n

Next, we address the problem of computing a symmetric, an approximate solution
to (74) which minimises the residual error norm.

PROBLEM 4.2. Find a symmetric Xm E .mm that minimises the residual error
norm, namely,

:= min Vm+l A.+I .E.X.A. A.+ ..E,X.E.A,m+ . m/
F

THEOREM 4.2. Suppose that m steps of the Arnoldi process have been taken and
that the residual error is given by (76), then i.f IA,(Am)(Aj(Am))-ll 1, .for all i,j,

Ctr VM, BB)B,(B(AX A--XM+
wheXM satisfies the rap-dimensional linear matx equation

GM GM t)Am (A GMAI GM BmB)A(AX A Xm +BBm .. Xm +
v yGMAt A GM(80) + EA+I,mA+,m .-.-m + AmAX EAm+,Am+,E
E XcME A+EA+,A+, m+,mAm+l,mE =0.

Proof. The proof is essentially the same as that of Theorem 2.2 except that it
uses (76).

The following procedure summarises the solution of large discrete Lyapunov equa-
tions.

Arnoldi (GMRES)-Discrete Lyapunov solver.
Calculate Vm, Qm/l, Am, Am+l,m, and Bm via the Arnoldi process.
hrnoldi: Find XA which satisfies A.XAmA xA + B.B’ O. Compute
the residual error norm I]RAml]F ]I A ]II 
and form the approximate solution: Pm := VmXAmV’m.
GMRES: Find XCmM, which satisfies (80).
Compute IIR2MII v/tr GM BmBm)Bm form(Sm(AmX, Am XGM + )and
the approximate solution: Pm :- vmXGmMV

The solution to the linear matrix equation in (80) may be computed using a
variant of the construction presented in 3.

4.2. The algebraic Riccati equation. Consider the continuous-time algebraic
Riccati equation

(81) AP + PA’ PC’CP + BB’ 0

in which A, P TNxN, B TNxp, C qxN. The method of solution we will
consider makes use of the following 2N x 2N Hamiltonian matrix that is associated
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with (81),

A -CC ](82) /= -BB’ -A

The matrix in (82) has a number of important properties.
1. The Hamiltonian matrix :H has no imaginary axis eigenvalues if and only if

[jwI- A’ Bm] and [(jwI- A’)’ Cm] have full row and column rank, respectively, for
all w 74.

2. Suppose that W transforms 7-/into a Jordan form; W-’HW J, where
W [w, w,..., w:] are the eigenvectors of -/. Then each solution to the Riccati
equation in (81) may be expressed as P "= WW, where W is assumed non-
singular and [W W]’ 7NN is a matrix of N eigenvectors of partitioned
such that W, WI 7.

For further details, we refer the reader to [19] and the references therein.
Consider the Riccati equation in (81) where N is large and p, q (( N. The

Arnoldi process then generates an orthogonal basis V, for the Krylov space Km :=
span{[B AB AUB A’-B]}. The residual error for any approximate solution of

Xthe form Pm= Vm mVm is then given by

(83)
Rm(X,):=A(VmXmV,) + (V,X,V)A’- X X(Vm mVm)C C(Vm mVm) + BB’= O.

Substituting (19)into (83) gives

(84)

Rm(Xm)--Vm+l[AmXm+XmA-XmCmcmxmWBmBm XmEmA+l’m
A,+.,EmX, 0 "+

where Cm := CVm and VmBm B. We seek a solution Pm VmXmWm in which Vm
is an orthogonal basis of the Krylov space by imposing an orthogonality condition on
Km We can state the approximation problem as the following.

PROBLEM 4.3. Find an approximate solution Pm := VmXmWm that satisfies the
Galerkin type condition WmRm(Xm Vm O.

THEOREM 4.3. Suppose that m steps of the Arnoldi process have been taken
and that the residual error is given by (84). Then provided that wI- Am Bm] and
[(jwI- A)’ Cm] have full row and column rank, respectively, for all w

(a) VmRm(Xm)Vm 0 if and only if Xm xAm, where XAm satisfies

(85) A A A BmBm =0;A,xA + XmAm ZnVmCmXm --(b) If the conditions of (a) are met, then the residual error norm is given by

(8.6)

Proof. The proof is essentially the same as that of Theorem 2.1 except that it
uses (84). D

The following procedure summarises the solution of large algebraic Riccati equa-
tions.
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Arnoldi-Continuous-Riccati solver.
Calculate Vm, Qm+l, Am, Am+l,m, and Bm via the Arnoldi process.
Then find XA which satisfies the low-dimensional algebraic Riccati equation

ArXAm+XAA-XACC,XA+S,S 0 (via the ordered Schur method
[19]).
Compute IIRAmlIF /11 AAm+,mEXmllF.
Form the approximate solution: Pm := V,xAv.

In control problems, typically, one is interested in computing a solution to the
Rieeati equation from either the stable or antistable basis for the eigenspaee of the
Hamiltonian matrix since it yields a symmetric and (semi) definite solution [19]. The
discrete time Rieeati equation may also be treated in a similar way to yield a residual
error norm and a constraining linear matrix equation, the derivation of which we omit.

5. Numerical experiments. The purpose of this section is to illustrate with
the help of two examples the behaviour of the residual error formulae presented in

3. The tests reported here were performed on a Sparc-10 Sun workstation using
Pro-MATLAB running under Unix.

Example 1. In this example, we have chosen A E 7NN and B E 7Np, where
N 1000 and p 4. A is a diagonal matrix with its elements uniformly distributed
in the interval [0 1] by taking ajj := (j + 1)/(N + 1). The B matrix has the form

(87) B

J1 0 0 0
0 J2 0 0
0 0 J3 0
0 0 0 J4

which is defined as follows. Let J be a vector of ones in 7-; then J1 J/15,
J2 J/150, J3 J/1500, and J4 J/15000. Figure 1 shows the evolution of the
residual error norm of the Arnoldi and GMRES methods for increasing rank of P,.
We make the following observations: the Arnoldi error is larger than that of GMRES
as predicted and both exhibit nonincreasing profiles, although the theory predicts this
behaviour only for GMRES.

Table 1 compares a few CPU run times for the Arnoldi and GMRES methods for
increasing rank of Pro. The times reported in this table are in seconds. The larger
CPU times needed for the GMRES method are attributed to the computationally
intensive algorithm of 3. Step 1 of the block GMRES solver presented in 3 must be
implemented as suggested in Remark 3.2. The following is a breakdown of the

TABLE 1
CPU run times for the Arnoldi and GMRES methods.

m
4 2.6923000e-02
8 4.7045000e-02
12 8.0165000e-02
16 1.2784200e-01
20 2.0119000e-01
24 3.2316100e-01
28 3.8514500e-01
32 5.0988800e-01

Arnoldi (sees) GMRES (sees)
3.7431300e-01
1.6965540e+00
4.9038100e+00
1.1461245e+01
2.2708456e+01
3.6983727e+01
6.1250413e+01
9.3542215e+01
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FIG. 1. Evolution of II(X-)llF fo A,oZd and GMRES methods for increasing rap.

work load in terms of floating point operations and memory requirements for each
algorithm. The main difference in the two methods proposed is in the computation
of a symmetric Xm; in the following, m is the iteration count; therefore, Am, Xm E

TmpXmp, and n mp2 + 2 p22 are defined in Theorem 3.3.
Barrels-Stewart [3] Schur decomposition: 10(mp)3. Solving linear systems:

0.5(mp)3. Obtaining the final solution: 2(rap)3. The total flop count is approxi-
mately 12.5(rap)3 with storage needs of approximately 2.5(rap)2, assuming that data
are overwritten.

Block GMRES Schur decomposition: 10(rap)3. Solving linear systems: 0.hn(mp)3.
Form the Mj’s: 2n(mp)3. Evaluate X12, X22, T13, D23, and D33: no less than
(m4 + + 1)(m- 1)p4n. Solve the linear system (59): 2n3 and form the final solution:

3 2 3 42n(mp)2. The total flop count is approximately 2n + 2n(mp) + n(2.5(mp) + (m /- 1)(m- 1)p4) + 10(mp)3 with storage needs of n(mp)2 + n2, assuming that the
data are overwritten.

The flop count for GMRES is higher than for the Bartels-Stewart algorithm;
however, the extra computations generally yield smaller residual errors. The two ex-
pensive steps in the GMRES algorithm are (i) the repeated solution of the Lyapunov
equation in (61) for Mj; and (ii) the construction of the unknown elements in Xj
and Dj. Finally, we observe that the GMRES algorithm consists of n independent
constructions which are combined using (59) and X ’in__l piXi to yieldXM. This
structure makes the algorithm suitable for parallel implementation. The large differ-
ence in CPU times between the Arnoldi based technique and the GMRES motivate
the search for numerically efficient solvers for (36).

Example 2. In this example, we have chosen A TNN and B TNp, where
N 200 and p 4. A is a diagonal matrix with its first 100 elements uniformly
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FIG. 2. Evolution of II(X-,)IIF for Arnoldi and GMRES methods for increasing rap.

distributed in the interval [0 1] by taking ajj := (j + 1)/(0.5N + 1), while the second
100 elements are distributed between [9 10] by taking ajj := 9 + (j + 1)/(0.5N + 1).
The B matrix has the form given in (87) in which J is a vector of ones in 7 and
J1, J2, J3, and J4 are as defined in Example 1. Figure 2 shows the evolution of the
residual error norm of the Arnoldi and GMRES methods for increasing rank of Pro.
We make the following observations: the Arnoldi error is larger than that of GMRES
as predicted and both exhibit nonincreasing profiles although the theory predicts this
behaviour only for GMRES. The main point of this example is to illustrate that there
is no apparent degradation in the algorithms’ performances when A is a nonnormal
matrix.

6. Conclusions. In this paper we have presented and tested two numerical tech-
niques for calculating low-rank approximate solutions to large Lyapunov matrix equa-
tions. We have given simple expressions for the residual error norms of the Arnoldi
and GMRES that are useful as stopping criteria in any practical implementation. Of
the two methods proposed, we regard GMRES as the superior in view of its minimum
residue norm property; however, this is achieved at the expense of more calculation
as reported in 5. We have proposed an algorithm for the solution of block GMRES
linear matrix equations that exploit the block,Hessenberg structure of Am. We have
carried out some simple extensions that address the approximate solution of large
discrete Lyapunov and algebraic Riccati equations. Throughout this paper, we have
opted to use block schemes to retain generality. The results and algorithms presented
here are in matrix form of which scalar (vector) instances are special cases.

Many questions remain unanswered and more effort is required in order to better
understand the performance characteristics of these methods. Some open questions
that we will continue to investigate are the following.
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Is Xm updatedable in a cheap way?
Is there a simple connection between the Arnoldi and GMRES solutions as was

found in [5]?
What are the inertia properties of XGmM?
What are good starting matrices for the GMRES linear equation solver?
Is preconditioning possible?
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