14 research outputs found

    Homogenization for advection-diffusion in a perforated domain

    Get PDF
    The volume of a Wiener sausage constructed from a diffusion process with periodic, mean-zero, divergence-free velocity field, in dimension 3 or more, is shown to have a non-random and positive asymptotic rate of growth. This is used to establish the existence of a homogenized limit for such a diffusion when subject to Dirichlet conditions on the boundaries of a sparse and independent array of obstacles. There is a constant effective long-time loss rate at the obstacles. The dependence of this rate on the form and intensity of the obstacles and on the velocity field is investigated. A Monte Carlo algorithm for the computation of the volume growth rate of the sausage is introduced and some numerical results are presented for the Taylorā€“Green velocity field

    Long-Run Accuracy of Variational Integrators in the Stochastic Context

    Get PDF
    This paper presents a Lie-Trotter splitting for inertial Langevin equations (Geometric Langevin Algorithm) and analyzes its long-time statistical properties. The splitting is defined as a composition of a variational integrator with an Ornstein-Uhlenbeck flow. Assuming the exact solution and the splitting are geometrically ergodic, the paper proves the discrete invariant measure of the splitting approximates the invariant measure of inertial Langevin to within the accuracy of the variational integrator in representing the Hamiltonian. In particular, if the variational integrator admits no energy error, then the method samples the invariant measure of inertial Langevin without error. Numerical validation is provided using explicit variational integrators with first, second, and fourth order accuracy.Comment: 30 page

    On the existence and the applications of\ud modified equations for stochastic differential\ud equations

    Get PDF
    In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive a SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed

    Pathwise Accuracy and Ergodicity of Metropolized Integrators for SDEs

    Full text link
    Metropolized integrators for ergodic stochastic differential equations (SDE) are proposed which (i) are ergodic with respect to the (known) equilibrium distribution of the SDE and (ii) approximate pathwise the solutions of the SDE on finite time intervals. Both these properties are demonstrated in the paper and precise strong error estimates are obtained. It is also shown that the Metropolized integrator retains these properties even in situations where the drift in the SDE is nonglobally Lipschitz, and vanilla explicit integrators for SDEs typically become unstable and fail to be ergodic.Comment: 46 pages, 5 figure
    corecore