377 research outputs found

    Calculating Valid Domains for BDD-Based Interactive Configuration

    Get PDF
    In these notes we formally describe the functionality of Calculating Valid Domains from the BDD representing the solution space of valid configurations. The formalization is largely based on the CLab configuration framework

    Combining Binary Decision Diagrams and Backtracking Search for Scalable Backtrack-Free Interactive Product Configuration

    Get PDF
    The impact of the formation of HO2-H2O adducts following reaction between H2O and HO2 and subsequent reaction of this adduct on HOx, H2O2 and O3 as a function of relative humidity in the marine boundary layer has been investigated using a zero-dimensional box model. The results of simulations with different product yields for the reaction of HO2-H2O with HO2 were compared with base case data derived from current recommendations for tropospheric modelling. It is suggested that inclusion of reactions of the HO2-H2O adduct may provide a significant sink for HO2 which has so far not been considered in models of tropospheric chemistry and depending on reaction products may have a significant impact on H2O2 and O3

    Interactive Cost Configuration Over Decision Diagrams

    Get PDF
    Abstract In many AI domains such as product configuration, a user should interactively specify a solution that must satisfy a set of constraints. In such scenarios, offline compilation of feasible solutions into a tractable representation is an important approach to delivering efficient backtrack-free user interaction online. In particular, binary decision diagrams (BDDs) have been successfully used as a compilation target for product and service configuration. In this paper we discuss how to extend BDD-based configuration to scenarios involving cost functions which express user preferences. We first show that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is non-additive or if it is encoded explicitly into MDD. We then discuss interactive configuration in the presence of multiple cost functions. We prove that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost configuration we develop a pseudo-polynomial scheme and a fully polynomial approximation scheme. The applicability of our approach is demonstrated through experiments over real-world configuration models and product-catalogue datasets. Response times are generally within a fraction of a second even for very large instances

    Combining configuration and recommendation to define an interactive product line configuration approach

    Full text link
    This paper is interested in e-commerce for complex configurable products/systems. In e-commerce, satisfying the customer needs is a vital concern. One particular way to achieve this is to offer customers a panel of options among which they can select their preferred ones. While solution exists, they are not adapted for highly complex configurable systems such as product lines. This paper proposes an approach that combines two complementary forms of guidance: configuration and recommendation, to help customers define their own products out of a product line specification. The proposed approach, called interactive configuration supports the combination by organizing the configuration process in a series of partial configurations where decisions are made by the recommendation.Comment: arXiv admin note: text overlap with arXiv:1108.5586 by other author

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Recommendation Heuristics for Improving Product Line Configuration Processes

    No full text
    In mass customization industries, such as car manufacturing, configurators play an important role both to interact with customers and in engineering processes. This is particularly true when engineers rely on reuse of assets and product line engineering techniques. Theoretically, product line configuration should be guided by the product line model. However, in the industrial context, the configuration of products from product line models is complex and error prone due to the large number of variables in the models. The configuration activity quickly becomes cumbersome due to the number of decisions needed to get a proper configuration, to the fact that they should be taken in pre-defined order, or the poor response time of configurators when decisions are not appropriate. This chapter presents a collection of recommendation heuristics to improve the interactivity of product line configuration so as to make it scalable to common engineering situations.We describe the principles, benefits and the implementation of each heuristic using constraint programming. The application and usability of the heuristics is demonstrated using a case study from the car industry
    corecore