4 research outputs found

    Caching mechanisms for habit formation in Active Inference

    Get PDF
    A popular distinction in the human and animal learning literature is between deliberate (or willed) and habitual (or automatic) modes of control. Extensive evidence indicates that, after sufficient learning, living organisms develop behavioural habits that permit them saving computational resources. Furthermore, humans and other animals are able to transfer control from deliberate to habitual modes (and vice versa), trading off efficiently flexibility and parsimony – an ability that is currently unparalleled by artificial control systems. Here, we discuss a computational implementation of habit formation, and the transfer of control from deliberate to habitual modes (and vice versa) within Active Inference: a computational framework that merges aspects of cybernetic theory and of Bayesian inference. To model habit formation, we endow an Active Inference agent with a mechanism to “cache” (or memorize) policy probabilities from previous trials, and reuse them to skip – in part or in full – the inferential steps of deliberative processing. We exploit the fact that the relative quality of policies, conditioned upon hidden states, is constant over trials; provided that contingencies and prior preferences do not change. This means the only quantity that can change policy selection is the prior distribution over the initial state – where this prior is based upon the posterior beliefs from previous trials. Thus, an agent that caches the quality (or the probability) of policies can safely reuse cached values to save on cognitive and computational resources – unless contingencies change. Our simulations illustrate the computational benefits, but also the limits, of three caching schemes under Active Inference. They suggest that key aspects of habitual behaviour – such as perseveration – can be explained in terms of caching policy probabilities. Furthermore, they suggest that there may be many kinds (or stages) of habitual behaviour, each associated with a different caching scheme; for example, caching associated or not associated with contextual estimation. These schemes are more or less impervious to contextual and contingency changes

    An active inference model of hierarchical action understanding, learning and imitation

    Get PDF
    We advance a novel active inference model of the cognitive processing that underlies the acquisition of a hierarchical action repertoire and its use for observation, understanding and imitation. We illustrate the model in four simulations of a tennis learner who observes a teacher performing tennis shots, forms hierarchical representations of the observed actions, and imitates them. Our simulations show that the agent's oculomotor activity implements an active information sampling strategy that permits inferring the kinematic aspects of the observed movement, which lie at the lowest level of the action hierarchy. In turn, this low-level kinematic inference supports higher-level inferences about deeper aspects of the observed actions: proximal goals and intentions. Finally, the inferred action representations can steer imitative responses, but interfere with the execution of different actions. Our simulations show that hierarchical active inference provides a unified account of action observation, understanding, learning and imitation and helps explain the neurobiological underpinnings of visuomotor cognition, including the multiple routes for action understanding in the dorsal and ventral streams and mirror mechanisms

    Cognitive neurorobotics and self in the shared world, a focused review of ongoing research

    Get PDF
    Through brain-inspired modeling studies, cognitive neurorobotics aims to resolve dynamics essential to different emergent phenomena at the level of embodied agency in an object environment shared with human beings. This article is a review of ongoing research focusing on model dynamics associated with human self-consciousness. It introduces the free energy principle and active inference in terms of Bayesian theory and predictive coding, and then discusses how directed inquiry employing analogous models may bring us closer to representing the sense of self in cognitive neurorobots. The first section quickly locates cognitive neurorobotics in the broad field of computational cognitive modeling. The second section introduces principles according to which cognition may be formalized, and reviews cognitive neurorobotics experiments employing such formalizations. The third section interprets the results of these and other experiments in the context of different senses of self, both “minimal” and “narrative” self. The fourth section considers model validity and discusses what we may expect ongoing cognitive neurorobotics studies to contribute to scientific explanation of cognitive phenomena including the senses of minimal and narrative self

    Forgetting ourselves in flow: an active inference account of flow states and how we experience ourselves within them

    Get PDF
    Flow has been described as a state of optimal performance, experienced universally across a broad range of domains: from art to athletics, gaming to writing. However, its phenomenal characteristics can, at first glance, be puzzling. Firstly, individuals in flow supposedly report a loss of self-awareness, even though they perform in a manner which seems to evince their agency and skill. Secondly, flow states are felt to be effortless, despite the prerequisite complexity of the tasks that engender them. In this paper, we unpick these features of flow, as well as others, through the active inference framework, which posits that action and perception are forms of active Bayesian inference directed at sustained self-organisation; i.e., the minimisation of variational free energy. We propose that the phenomenology of flow is rooted in the deployment of high precision weight over (i) the expected sensory consequences of action and (ii) beliefs about how action will sequentially unfold. This computational mechanism thus draws the embodied cognitive system to minimise the ensuing (i.e., expected) free energy through the exploitation of the pragmatic affordances at hand. Furthermore, given the challenging dynamics the flow-inducing situation presents, attention must be wholly focussed on the unfolding task whilst counterfactual planning is restricted, leading to the attested loss of the sense of self-as-object. This involves the inhibition of both the sense of self as a temporally extended object and higher–order, meta-cognitive forms of self-conceptualisation. Nevertheless, we stress that self-awareness is not entirely lost in flow. Rather, it is pre-reflective and bodily. Our approach to bodily-action-centred phenomenology can be applied to similar facets of seemingly agentive experience beyond canonical flow states, providing insights into the mechanisms of so-called selfless experiences, embodied expertise and wellbeing
    corecore