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a b s t r a c t 

A popular distinction in the human and animal learning literature is between deliberate (or willed) and 

habitual (or automatic) modes of control. Extensive evidence indicates that, after sufficient learning, living 

organisms develop behavioural habits that permit them saving computational resources. Furthermore, hu- 

mans and other animals are able to transfer control from deliberate to habitual modes (and vice versa), 

trading off efficiently flexibility and parsimony – an ability that is currently unparalleled by artificial 

control systems. Here, we discuss a computational implementation of habit formation, and the transfer 

of control from deliberate to habitual modes (and vice versa) within Active Inference: a computational 

framework that merges aspects of cybernetic theory and of Bayesian inference. To model habit formation, 

we endow an Active Inference agent with a mechanism to “cache” (or memorize) policy probabilities from 

previous trials, and reuse them to skip – in part or in full – the inferential steps of deliberative process- 

ing. We exploit the fact that the relative quality of policies, conditioned upon hidden states, is constant 

over trials; provided that contingencies and prior preferences do not change. This means the only quan- 

tity that can change policy selection is the prior distribution over the initial state – where this prior 

is based upon the posterior beliefs from previous trials. Thus, an agent that caches the quality (or the 

probability) of policies can safely reuse cached values to save on cognitive and computational resources –

unless contingencies change. Our simulations illustrate the computational benefits, but also the limits, of 

three caching schemes under Active Inference. They suggest that key aspects of habitual behaviour – such 

as perseveration – can be explained in terms of caching policy probabilities. Furthermore, they suggest 

that there may be many kinds (or stages) of habitual behaviour, each associated with a different caching 

scheme; for example, caching associated or not associated with contextual estimation. These schemes are 

more or less impervious to contextual and contingency changes. 

© 2019 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Imagine a tourist visiting a new city for the first time, having

o choose which bus or metro to take to reach the city centre.

his choice problem requires planning and the careful consider-

tion of alternative routes, with their respective costs and bene-

ts. However, in successive visits to the same city, the tourist can

kip these complicated evaluations and reuse good solutions – un-

ess (for example) a metro station has been closed in the mean-

ime, making some replanning necessary. This simple example

llustrates the fact that humans and other animals can flexibly in-

est more or less resources (e.g., attention resources) into cognitive
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asks, depending on task demands and uncertainty. A traditional

istinction in human psychology and the animal learning literature

s between deliberative (goal-directed) and habitual (automatic or

outine) systems: deliberative, goal-directed decisions consider the

urrent situation and use prediction to foresee the consequences

f potential plans, while habits reflect information slowly accu-

ulated over time; e.g., information about past rewards collected

hile executing a given action. In general, deliberative process-

ng is considered more cognitively demanding but also more flexi-

le than habits [3,14,47] . This distinction has received considerable

mpirical support but its computational principles and neuronal

ases are still debated [15] . A particularly challenging question is

he way an adaptive agent should balance declarative and habitual

trategies and under which conditions it should allocate or transfer

ontrol between them. The ability to transfer control from (flexi-

le but demanding) deliberative strategies to (cheaper but inflex-

ble) habitual strategies, and vice versa, is considered a hallmark
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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of adaptive behaviour and cognitive control, which permits one to

combine adaptivity and parsimony; but its mechanisms are incom-

pletely known. 

1.1. Background and open questions 

In this article, we ask how control should be transferred from

deliberative to habitual control strategies, and vice versa, from the

perspective of a normative – Active Inference – agent model [24] . 

The transfer of control from deliberative to habitual strategies

(after a number of trials that is plausibly sufficient to reduce envi-

ronmental uncertainty and behavioural variability) is called habiti-

sation — and has been studied widely in the animal and hu-

man learning literature. While developing habits is generally useful

to alleviate cognitive and behavioural demands, it can also have

drawbacks. When an animal performs a behavioural (e.g., lever

pressing) task for which it is rewarded (e.g., with a food) for a long

period, and operates in conditions of low environmental volatility,

it can develop habits that become inflexible. In other words, effi-

cient habits preclude a context sensitivity that is necessary when

environmental contingencies change. Behavioural inflexibility is as-

sessed using a number of procedures, such as by testing the ani-

mal’s sensitivity to reinforcer devaluation (e.g., the food delivered

by lever pressing is deprived of value because the animal is se-

lectively satiated with the same food [3,4,9,31,32] ). If the animal

perseverates (e.g., continues pressing the lever) after the reinforcer

devaluation, it is considered to be under habitual control and re-

flecting the loss of the ability to switch back to a more flexible,

context-sensitive, deliberative (or goal-directed) form of control. 

However, inflexible perseveration is a rather extreme situation

that is usually associated with overtraining (or lesions [4,31] ):

in most real-time situations, a person whose actions are con-

trolled automatically is still able to re-engage deliberative process-

ing when necessary, and especially when automatic control fails

[47] . For example, a person who is learning to drive initially de-

votes her full attention to the driving task; but she can successively

automatise most actions (and perform other tasks while driving).

Crucially, if something goes wrong with the habitual policy (e.g.,

pressing the brake pedal produces a loud noise), the driver can

re-engage her deliberative system and redeploy her attention to

the task. This example suggests that in some cases, it is possible

to transfer control from deliberative to habitual systems (and rou-

tinise behaviour), without losing the ability to transfer control back

from habitual to deliberative systems – perhaps with the aid of an

additional (supervisory) system that monitors the success of au-

tomatic strategies and/or contextual changes [47] . In sum, as the

above discussion prompts a set of questions about what habits are

and how they are formed in the first place; whether there are dif-

ferent (more or less severe) forms of habitization [3,47] ; and under

which conditions habit formation implies behavioral inflexibility. 

A widespread assumption in the literature is that deliberative

and habitual strategies of choice may correspond to two different

control schemes that operate in parallel and continuously compete

for being selected [10] . These two control schemes would corre-

spond to model-based and model-free controllers of reinforcement

learning, respectively. These two controllers differ in that the for-

mer entails a form of prospective evaluation of future rewards,

whereas the latter uses cached action values; but importantly, they

are learned in parallel. However, an emerging alternative is that

deliberative strategies are acquired first and scaffold the acquisi-

tion of habitual strategies. For example, habitual strategies may de-

rive from a “compression” or “caching” of deliberative strategies

(e.g., by chunking action sequences) that entail a more parsimo-

nious use of cognitive resources while preserving accuracy – at

least when the agent has no residual uncertainty about the envi-

ronment [11,12,23,49,60,61] . As we discuss below, the idea of aug-
Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching

puting, https://doi.org/10.1016/j.neucom.2019.05.083 
enting a deliberative architecture with the ability to cache poli-

ies constitutes a promising approach to understand habit forma-

ion and their deployment under adequate contextual conditions. 

.2. Habit formation and transfer of control in Active Inference 

In this article, we address the above questions from the per-

pective of an artificial (Active Inference) agent that deploys adap-

ive control in simulated foraging scenarios [26,53] . The active in-

erence agent is quintessentially deliberative; but here we explore

ow it can be endowed with the abilities to acquire habits and

o transfer control from (more demanding) deliberative planning

trategies to (less demanding) habitual routines by caching poli-

ies, when the situation permits; for example, when the choice

ontext is stable. On this perspective, when the current choice sit-

ation induces no residual uncertainty or risk, an agent can select

 behavioural policy act based on a learned (cached) score, rather

han engage in a full deliberative (policy evaluation and selection)

rocess. The underlying idea is that, if contingencies do not change,

olicy scores are stable and caching them might be more efficient

han re-calculating them again. 

Our simulations offer a novel perspective on the relationship

etween deliberation and habits, by suggesting that habitual poli-

ies can form and be selected by caching deliberative policies – and

hat this saves resources (e.g., computational time). The transfer of

ontrol from deliberative to habitual control is based on a simple

threshold-based) evaluation of habitual policy accuracy under the

urrent context, whereas the opposite transfer from habitual to de-

iberative control depends on a mechanism that estimates contex-

ual changes. In other words, an agent that is under the control of

 habitual policy can transfer control to deliberative processes as

ong as it can recognize that the context has changed; conversely,

ailing to notice contextual changes leads to the well-known per-

everation effects of habits and overtraining. 

. Active Inference 

We develop our argument within Active Inference: a framework

hat combines cybernetic ideas on the centrality of control and

rror-correction processes [1,67,83] with an inferential (Bayesian)

cheme [27,60,73] . This section shortly summarizes the key aspects

f Active Inference that are essential to understand the simulations

eported in this article; a more detailed, formal introduction is pro-

ided in Appendix A . 

Active Inference is a corollary of the free energy principle that

asts decision-making and behaviour as a minimisation of varia-

ional free energy (or equivalently, a maximisation of model ev-

dence or marginal likelihood). This means that perception and

ction (or policy) selection are treated as inference problems

2,5,16,25,42,46,55,58,70,76,77,81] . Action selection implies evaluat-

ng the quality of a policy (or action sequence) π for each possi-

le state an agent could be in – which corresponds to calculating

he (negative) expected free energy of π , or G π . Importantly, poli-

ies are evaluated in relation to both their pragmatic or economic

alue (e.g., how well they achieve goals) and their epistemic value

e.g., how well they reduce uncertainty). To understand how prag-

atic value is calculated, it is important to note that active infer-

nce absorbs goals into expected free energy in the form of prior

eliefs about outcomes (that can be produced by acting). One can

hen formulate optimal behaviour as minimising surprise in rela-

ion to these prior beliefs. Furthermore, as minimizing expected

urprise corresponds to minimising entropy, any policy that min-

mises expected free energy is, effectively, resolving uncertainty.

he imperative of resolving epistemic uncertainty is thus part and

arcel of free energy minimisation and it dissolves the exploration-

xploitation dilemma; typically causing agents to forage for infor-
 mechanisms for habit formation in Active Inference, Neurocom- 
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ation until they are sufficiently confident to pursue their goals or

rior preferences [26] . 

Active Inference is thus a quintessentially model-based scheme,

hich selects actions based on the prospective evaluation of the

ragmatic and epistemic values of candidate policies. This future-

riented (or planned) behavior rests on the notion of the expected

ree energy attained following competing policies. More specifi-

ally, when an agent is in a particular (hidden) state, it can evalu-

te the quality of its policies in terms of the free energy attained

nder each policy: 

 π = 

T ∑ 

τ= t 
G(π, τ ) , 

here 

(π, τ ) = −H[ P (o (τ ) | s (τ ))] · ˆ s (τ ) 
π −

(
ln ̂

 o (τ ) 
π − ln P (o (τ ) ) 

)
· ˆ o (τ ) 

π (1) 

ere, H denotes entropy, and P ( o ( τ ) | s ( τ ) ) is the likelihood of the

enerative model, P ( o ( τ ) ) represents prior beliefs about future out-

omes o ( τ ) according the generative model and ˆ s (τ ) 
π and ˆ o (τ ) 

π are

he expected states and outcomes under each policy at time τ , re-

pectively. Heuristically, the first term represents the expected res-

lution (an expected value, mathematically) of uncertainty or am-

iguity about outcomes, given hidden states, under the predictive

osteriors over those states Q ( s ( τ ) | π ), while the second term ex-

resses the divergence between the predictive posteriors and pri-

rs over outcomes Q ( o ( τ ) | π ) and P ( o ( τ ) ) (a derivation of Eq. (1) can

e found in [26] ). Intuitively, this scores the difference between

redicted and preferred outcomes in the future, under the policy

n question. This term is formally identical to the objective func-

ion of KL (Kullback-Leibler) control [36] and corresponds to ex-

ected risk in economics [85] . A softmax function of expected free

nergy under each policy G π provides posterior beliefs about the

est policy, from which the subsequent action is sampled. 

The quality of policies (i.e., expected free energy) can be de-

omposed in several ways: in the absence of any ambiguity about

he outcomes in any particular state, the expected free energy cor-

esponds to the KL divergence between the predicted and pre-

erred states. Preferred states are specified in terms of prior pref-

rences. This means that Active Inference corresponds to risk

ensitive control [33] when there is no ambiguity about out-

omes (when there is ambiguity, the expected free energy also

ncludes an additional epistemic component, please see [26,53] ).

his scheme has been used to model waiting games [28,29] the

rn task and evidence accumulation [19] , trust games from be-

avioural economics [45] , addictive behaviour [72] , two-step maze

asks [26,53] and engineering benchmarks such as the mountain
ig. 1. The double T-maze scenario used in our simulations. The agent always starts from 

epending on the current context (A-D). 

Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching

puting, https://doi.org/10.1016/j.neucom.2019.05.083 
ar problem [22] . It has also been used in the setting of computa-

ional fMRI [71] . 

In this article, we introduce a fundamental simplification of this

ctive Inference scheme, by showing how the evaluation of policies

and subsequent selection – can be finessed through caching . The

ationale of this idea is that, if the contingencies mediating state

ransitions – and prior preferences – of an agent do not change,

he quality of a policy from any given state will not change from

rial to trial. This means the only things that change are the beliefs

bout the initial and subsequent hidden states the agent finds itself

n. Thus, it is not necessary to re-compute the expected free energy

 π of policies on subsequent trials, because the only thing that

hanges are beliefs or expectations about hidden states. The latter

an be accumulated from trial to trial so that the agent becomes

ore confident about the state it starts from. 

Below we introduce three novel computational schemes that

se caching within Active Inference and compare them during a

imulated foraging task (the pseudocode of the three schemes is

eported in Appendix B ). Our simulations will show that (1) cached

olicy probabilities can be used to skip some or all the computa-

ions that underwrite Active Inference, thus entailing a more ef-

cient mode of control (in terms of, for example, computational

ime); (2) these approximations are only valid in some circum-

tances, while in other cases they fail – producing characteristically

nflexible behaviour and the perseverative effects of habits. 

. A simulated foraging task 

We illustrate how the caching mechanisms work by focusing on

 simulated foraging task: a double T-maze with 10 locations. In

his set-up, an agent (an artificial rat) starts from the initial loca-

ion (location 1), and has to reach one of four reward locations (5,

, 8, 10), see Fig. 1 . At every trial, only one of the four reward loca-

ions is actually baited with a reward. The actual reward location

epends on the current choice context, which can be conceptual-

zed as reward contingency: context is A if the reward location is 5,

s B if the reward location is 7; is C if the reward location is 8; and

s D if the reward location is 10. The context is initially unknown

o the agent – but since the agent is tested in the double T-maze

or a number of successive trials (here, 40) it has the opportunity

o learn which context it is in. Learning occurs because when the

gent reaches (or not) a reward at the end of trial, it can (proba-

ilistically) update its estimate of the current context (e.g., getting

 reward in location 5 increases the belief to be in context A. Fur-

hermore, the agent can transfer its context estimation to the next

rial (i.e., it has prior knowledge that context is stable across trials

ith probability 99%) and thus, even if reward delivery is stochas-
the start location (location 1) and can collect rewards (only) at states 5, 7, 8 or 9 

 mechanisms for habit formation in Active Inference, Neurocom- 
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Fig. 2. Schematic illustration of the full active inference procedure. This procedure 

comprises: (A) state estimation after the agent has collected an outcome in its cur- 

rent state (grey denotes high probability), (B) planning 1-step forward; (C) policy 

evaluation, n -steps forward, until the end of the policy; (D) policy / action selec- 

tion; and (E) action. All these steps are repeated, until the end of the trial (in our 

simulations, 4 times, as the trial entails making 4 successive choices). Grey scale 

denotes probability distributions. Note that for simplicity, the generative model il- 

lustrated in this figure comprises 10 states (10 locations × 1 context), not 40 states 

(10 locations × 4 contexts) as in the simulations reported below. See the main text 

for details. 
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tic (here, reward are delivered in the “correct” location 95% of the

times), it has the opportunity to accumulate information about its

context across trials – or even infer the context has changed. 

3.1. A schematic illustration of Active Inference 

The simulated foraging task can be solved using the delibera-

tive scheme of active inference, which uses a generative model to

calculate the expected free energy G π of (i.e., the path integral of

the free energy expected under — see Appendix A.1 for a detailed

description) the allowable policies, and then selects the next action

using a (precision-weighted) softmax function of G π . A schematic

illustration of the active inference procedure is sketched in Fig. 2

and a pseudocode is shown in Appendix B . 

First, in stage A ( Fig. 2 A), the agent estimates its current state

using its current observations and prior beliefs (not shown); the

grey color of S3 denotes a high probability of being in that loca-

tion. Second, in stage B ( Fig. 2 B), the agent does a one-step “for-

ward planning” to predict the possible future locations (S2 and S4;

light grey denotes a smaller probability compared to S3). Third, in

stage C ( Fig. 2 C), the agent evaluates the quality of all its policies,

i.e., their expected free energy ( G π , see Eq. (1) ), by considering the

integral of the free energy along the states that compose the path

defined by the policy. Note that if the agent’s generative (action-
Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching

puting, https://doi.org/10.1016/j.neucom.2019.05.083 
tate) model is deterministic, as in this simulation, the path will

omprise just a sequence of states. However, the model can be

tochastic and thus each policy would entail a probability distri-

ution of future states, as shown in Fig. 2 – and it is this distribu-

ion that will be evaluated. Fourth, in stage D ( Fig. 2 D), the agent

ransforms the list of G π values of the policies into a probabil-

ty distribution (using a precision-weighted softmax function) and

hen it samples an action from it. This means that it uses the ex-

ected free energy or G π values of the different policies as (prior)

robabilities for action selection. Finally, in stage E ( Fig. 2 E), the

gent executes the action to induce a state transition in the “real

orld”. After this transition, the agent samples a new observation

nd starts again from stage A, and so on, until it reaches a termi-

ation (absorbing) state at the end of the maze. 

As shown in previous simulations [26,53] the Active Inference

cheme leads to optimal (free-energy minimizing) behaviour: as

he agent accumulates information across trials about its current

ontext, it selects the reward location more frequently. However,

his scheme is computationally costly and it requires engaging the

ull generative model for planning and policy evaluation that each

rial. Our experiments below show that – in some circumstances

one can eschew parts of the deliberative processing by caching

he probability distribution of the “values” of policies (i.e., their ex-

ected free energy G π ), calculated during previous trials. In other

ords, there are cases in which using cached policy probabilities

s more cost-effective that calculating them anew. This simplifica-

ion is not just a nuance but can be seen as part of the free en-

rgy minimization imperative, if one assumes that agents believe

hey will avoid costly computations, analogous to model selection

nd the “simplification” of generative models by removing exces-

ive parameters [18,25,60] . 

Below we introduce three approximate Active Inference

chemes, in which the agent caches (probabilities of) G π values

f its policies, for each state. In the first scheme, the cached val-

es are used to select the “best” policy, thus skipping entirely the

omputations of policy selection, planning and policy estimation.

n the second scheme, the cached values are used for planning,

hereas in the third scheme, the cached values are used for pol-

cy evaluation. In the next section, we introduce each scheme in

etail, discuss the differences between them, and highlight simi-

arities with caching mechanisms in biological and computational

heories of (reinforcement) learning. 

. Results 

We simulated the behaviour of an Active Inference agent in the

ouble T-maze shown in Fig. 1 for 40 trials (all results are an av-

rage of 100 simulations). The agent starts always from location 1

n the maze. The initial hidden context is A (i.e., reward location is

) from trial 1 to trial 20, and then it becomes context D (reward

ocation is 10) from trial 21 to trial 40 – thus requiring the agent

o change its policy. 

The generative model used for the simulations is shown in

ig. 2 . It comprises 40 states (10 locations × 4 contexts); 20 obser-

ations (10 locations × 2 cues: red = reward, white = no reward);

7 policies, which cover exhaustively the possible action sequences

n the maze. Note that only 4 of these policies potentially lead to

 reward, i.e., (up, left, up, left), (up, left, up, right), (up, right, up,

eft), (up, right, up, left). 

.1. Scheme 1: using the cache during action selection 

Suppose an agent has to solve the foraging task shown in

ig. 1 many times. If the agent remembers or caches the “value”

r “quality” of its policies from previous trials, then all it has to do

s to take (at the beginning of stage A) the maximum of this value
 mechanisms for habit formation in Active Inference, Neurocom- 
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Fig. 3. Schematic illustration of the generative model. The generative model comprises 10 control states, 40 hidden states and 20 observations. Red is a reward observation, 

while white is a neutral, non-rewarding stimulus. This figure shows that the starting location is always 1, but it can correspond to 4 different states depending on the context 

(e.g., state 1 if the context is A, state 4 if the context is D). There are 4 potential goal locations: location 5 if the context is A (which corresponds to state 17), location 7 if 

the context is B, location 8 if the context is C, and location 10 if the context is D (which corresponds to state 17). Note that in our simulations, we only use the two contexts 

A and D. We constructed 17 policies (not shown here) that cover the possible moves of the agent. The two most important policies are policy 1 = up, left, up, left, which is 

the best policy under context A, and policy 2 = up, right, up, right, which is the best policy under context D. 
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9  
nder its beliefs about current hidden states; for example, that it is

tarting from location 1 in context A. This avoids having to reassess

he B,C and D stages of the procedure, and thus to re-compute the

olicies and engenders habitual behaviour. Clearly, this will only

ork if we assume one of the alternative policies constitutes a

iable solution for the current task. However, under this assump-

ion, the resulting scheme provides a graceful connection between

oal-directed active inference and habitual behaviour; the habit

s selected automatically when the agent is sufficiently confident

hat it will result in preferred outcomes. The nice thing about this

cheme, is that habit selection is very simple: if, at the beginning

f each trial (before stage A), the maximum value of the expected

istribution, with respect to the expectations of the final state, over

he policy beliefs conditioned by the hidden states, namely: 

 ˆ s (T ) [ P (π | s )] = 

∑ 

i 

ˆ s (T ) 
i 

P (π | s i ) (2)

s higher than a given reference value – for example, p th = 0 . 90 –

r equivalently, if there is a policy whose probability is higher than

.9 – then it can be selected automatically; otherwise, the quality

f all policies can be re-evaluated, to ensure that prior preferences

r task contingencies have not changed. 

In contrast to standard Active Inference, here the agent caches

he probability of all policies in each state P ( π | s ) (i.e., the

recision-weighted softmax of the expected free energy G π of poli-

ies), for each state. At the beginning of each trial, the agent does

ot use Active Inference; rather, it firstly checks if the cache of the
Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching

puting, https://doi.org/10.1016/j.neucom.2019.05.083 
ast context it experienced (in the previous trial) includes a policy

hose probability is higher than p th . If this is the case, it selects

deterministically) this policy. If not, it adopts the usual active in-

erence scheme shown in Fig. 2 and updates the cache: the pol-

cy probability values P ( π | s ) are updated using a sequential update

delta) rule: 

 (π | s ) t+1 = P (π | s ) t + w 

(t) 
ˆ s 

(
ˆ π − P (π | s ) t 

)
(3)

n Eq. (3) , the updated policy probability (at time t + 1 ) considers

he cached policy probability (at current time) and a prediction er-

or term, which compares expectations about policy probabilities

nd their cached probabilities (at time t − 1 ). The prediction error

erm is weighted by w 

(t) 
ˆ s 

, which corresponds to the probabilities

f each policies to take the agent occupying the expected state ˆ s at

he current time t . This implies that, the more confident the agent

s about being in a particular state, the more it will change policy

xpectations, conditioned on that state. This updating procedure is

sed for all policies in all the states that the agent entertains. 

The functioning of the first caching scheme is illustrated in

ig. 4 . The first four panels ( Fig. 3 3A-D) show the results of the

oraging simulations, averaged across 100 replications. Panel A rep-

esents the performance of the agent over trials 1–40 (in black)

nd its uncertainty about the current context (in red). After the

rst few trials, accuracy increases and uncertainty decreases. This

amping of accuracy (and decrease in uncertainty) is due to the

act that rewards are collected probabilistically (rewards appear

5% of the time in the contextually correct location; i.e., location 5
 mechanisms for habit formation in Active Inference, Neurocom- 
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1 Note that this scheme uses the policy probabilities of states 17 and 40 (not 

states 1 and 4) to decide whether or not to habitise (because, as explained in the 

main text, these are the max values in each context). Here, we show the proba- 

bilities of states 1 and 4, for consistency with the two subsequent schemes and 

because the relative probabilities of the policies are very similar in states 1 and 17 

(as well as in states 4 and 40); although of course the absolute values are not. 
in context A) and actions are selected stochastically during active

inference. However, the context changes at the 21th trial. Because

the agent is not immediately aware of the contextual change, it

will initially select the old, wrong policy – and fail. However, after

a few trials, its performance starts to recover, achieving a high level

of accuracy after few trials. Panel B reports how many times (aver-

aged across 10 0 0 repetitions) choice was habitised, for each trial.

This panel shows a progressive transfer of control from deliberative

choice to automatic habit selection, when uncertainty falls signif-

icantly (around trial 5), then a second transfer of control back to

deliberative choice (shortly after the contextual change of trial 21),

and a third transfer of control when uncertainty is resolved again

(around trial 30). Panel C shows the same phenomenon, but from

another angle: it reports the (average) probability of the highest

policy, and shows that (on average) the best policy surpasses the

habitisation threshold (here, p th = 0 . 9 ) around trial 5, then falls be-

low the threshold shortly after the contextual change of trial 21,

and surpasses the threshold again around trial 30. 

These results show that despite habitisation, context sensitivity

is preserved. This is because policy selection is based upon averag-

ing the quality of policies over beliefs about hidden states – that

include contextual factors. This means that if the agent encounters

a change in context, the outcomes will induce a loss of confidence

about the context it is currently operating in. This will reduce the

relative probability of the habit, enabling a new policy to be eval-

uated online (and eventually the formation of another habit). In

other words, the fact that policies are context-specific allows the

agent to recover from wrong habits, after it notices a contextual

change (thus, with some delay). 

What are the benefits of selecting policies automatically rather

than using the full deliberative scheme of active inference? Panel D

illustrates the benefits of caching G π values in terms of a measure

of complexity: the (computational) time of the scheme. Initially,

computational time decreases towards a plateau that corresponds

to the habitisation stage. Computational time rises again follow-

ing the contextual switch and then decreases smoothly until the

last trial. On average, the time for the execution of a single trial is

0.0054 s. Note that computational time is just one of several ways

to characterize the “costs” of the different solutions; it is used here

as a proxy for various kinds of resources (e.g., attention, memory

and planning) that need to be allocated to deliberative control, see

[74] . 

The agent’s internal states that lead to habitisation and transfer

of control are illustrated in Fig. 4 E, which shows the probability of

the best policy for each of the 40 states, over time. Although this

figure shows values for each state (location × context), in our sim-

ulations we only use the maximum value for each context, which

corresponds to state 17 (in context A) and state 40 (in context D).

In other words, the agent would only need to know (cache) the

value of its best policy in each context (4 items rather than 40).

However, showing all 40 states in Fig. 4 E illustrates the progres-

sive development of a graded representation of the value of (the

best policy in) states, which has analogies with the notion of a

value function in reinforcement learning (although it is used dif-

ferently in this simulation), see [78] . One can see that this proba-

bility increases over the first 20 trials for all the states along the

correct path under context A (i.e., states 1, 9, 5, 21 and 17, which

correspond to locations 1, 3, 2, 6 and 5 under context A). Note

that the probability is already high at state 1, which corresponds

to the start location, but increases with successive moves towards

the correct goal site (this is expected: in active inference, policy

values can only increase along the path if the agent collects no

new information). 

After the contextual change at trial 21, the probabilities of the

states along the correct path under context D start to increase. At

the same time, the probabilities of the states along the correct path
Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching

puting, https://doi.org/10.1016/j.neucom.2019.05.083 
nder context A begin to decrease (although they remain signifi-

antly higher than the probabilities of other paths). This is because,

fter the changing context, the agent becomes uncertain about the

urrent context (see Fig. 4 H); hence it updates the cached policy

xpectations under context A fallaciously. In other words, when it

ecalculates policy expectations, it updates policy expectations for

ll contexts A–D (albeit with a rather low weight w), rather than

nly in the states of context D, in which it currently occupies. Still,

ecause the agent identifies the contextual change within a few

rials, it quickly begins to update only the states of context D and

oes not completely “wash out” the cache for context A. In other

ords, after a few trials, the agent correctly identifies the existence

f two different contexts (A vs. D), each affording a different policy.

ontext sensitivity is important because it precludes catastrophic

orgetting – the replacement of old (but useful) memories when

ontext changes, at the expense of a larger state space. 

Panels F and G show the probability of the 17 possible policies

t the starting location in context A (i.e., state 1) and context D

i.e., state 4), respectively 1 . This probability is calculated by simply

e-normalizing the G π values of the different policies in states 1

nd 4 of Panel D. As shown in Panel F, the probability of the best

olicy (policy 1 = (up, left, up, left)) in state 1 increases over time

uring the first 20 trials, in which the context remains stable. In

ther words, when the context does not change, policy selection

ecomes essentially deterministic – because the agent has identi-

ed the correct policy and, consequently, there is no need for ex-

loration or epistemic foraging [26] . In these conditions, caching

 π values is clearly more parsimonious than re-computing them.

s shown in Panel G, in correspondence of the contextual shift

t trial 21, the agent has no policy that is fit for purpose for the

ew context. This is because it has not identified the contextual

hange yet (i.e., it still believes it is in context A, see Panel H) and

eeps selecting the best policy of context A (policy 1) for a while.

his perseveration is a typical effect of habitual behaviour and per-

ists until the agent correctly infers the changing context. When

he agent starts experiencing surprising outcomes (no reward) for

 few trials and becomes thus uncertain about the current context,

t starts exploring the task contingencies, as in the initial experi-

ental trials, until it identifies a good policy (policy 2 = up, right,

p, right) for the new context D. At this point, the probability of

his new policy increases and behaviour can be habitised again. 

Panel H shows that after the contingency change at trial 21, the

gent incorrectly believes it is still in context A. This is because,

n our simulations, outcomes are collected probabilistically (95% of

he times); failing to solicit an expected outcome lowers the con-

dence about the context but does not necessarily mean that a

hange of context has occurred. Furthermore, the agent has a prior

elief that context will remain stable across trials 90% of the times

which enables it to use its knowledge accumulated during past

rials at the beginning of a new trial). As a consequence, changing

eliefs about context thus requires a few trials. During these trials,

he agent needs to explore other paths / policies, in order to re-

olve uncertainty (i.e. expected free energy) about the new context

s B, C or D (and to find a good policy for the new context). 

In summary, this caching scheme solves the foraging task effi-

iently and is more efficient than the full active inference scheme.

owever, this scheme only considers whether a good policy was

vailable in the last context (during the previous trial) and selects

n action without estimating the context it finds itself in at the be-
 mechanisms for habit formation in Active Inference, Neurocom- 
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Fig. 4. Simulation results of Scheme 1. Agent’s performance (A–C) and beliefs (E–H) during the 40 trials. All results are the average of 100 repetitions. (A) Performance (black) 

and uncertainty (red) of the agent in the 40 trials. Note that we changed the context (and reward contingencies) at trial 21. (B) Average percentage of habitised behaviour. 

(C) Probability of the best policy; the threshold for habitisation is 90%. (D) Computational time required by the scheme. (E) Maximum probability of a policy, for every state. 

Note that states are calculated as “locations × contexts”; thus, for example, states 1, 9, 5, 21 and 17 form the correct path for context A, and correspond to locations 1, 3, 2, 

6 and 5 of context A in Fig. 1 . (F) Probability of the 17 policies when the agent is in state 1; i.e., the starting location in context A. (G) Probability of the 17 policies when 

the agent is in state 4; i.e., the starting location in context D. (H) Contextual estimate; i.e., probability that the right context is 1 (A) to 4 (D). 
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inning of a new trial. This is not a problem (except during contex-

ual changes) in our simulations, where the context remains stable

or 20 trials. However, in other situations – such as when the con-

ext is more volatile (e.g., A-D-A-D) – this scheme would persever-

tes with the wrong policy – even if cued about the new context.

his limitation is addressed by the next caching scheme, which in-

ers the context before selecting a (deliberative or habitual) policy.

.2. Scheme 2: using the cache during planning 

The second caching scheme we considered uses the cache dur-

ng the planning phase (stage B, illustrated in Fig. 2 B) of Active In-

erence. If, during planning, the agent expects to be in a state hav-

ng a cached policy probability E (t) [ P (π | s )] exceeds the threshold
ˆ s 

Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching

puting, https://doi.org/10.1016/j.neucom.2019.05.083 
p th = 0 . 9 , it selects the policy, thereby skipping the rest of Active

nference evaluation. Otherwise, if the probabilities of all the ex-

ected policies are less than the threshold, it re-computes the pol-

cy G π values (and probabilities), updates the cache as in the first

cheme, and proceeds with the usual Active Inference procedure.

n contrast to the first caching scheme, here the agent infers the

urrent context and starts the planning procedure before selecting

eventually) a habit. This makes this second scheme slightly more

ostly than the first, as the agent needs to infer its current state

nd form beliefs about the future hidden states expected under a

olicy, but still less costly than the full active inference procedure. 

Fig. 5 shows the results of this simulation using the same

ormat as Fig. 4 . Panels A–D are very similar in Figs. 4 and 5 ,

hich implies that despite the different caching mechanisms, the
 mechanisms for habit formation in Active Inference, Neurocom- 
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Fig. 5. Simulation results of Scheme 2. Panels use the same format as in Fig. 4 , except for Panel B, where results are colour-coded, reflecting the fact that behaviour can be 

habitised at the first (blue), second (azure), third (yellow) or fourth (red) decision point. 
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performance of the two schemes is qualitatively similar. However,

there are some important differences due to the particularities

of the two schemes. The most important difference between this

scheme and the previous scheme emerges when one considers

that, in the current scheme, deliberative and habitual behaviour

can coexist in the same trial; i.e., the agent can deliberate at the

beginning of a trial and then complete the trial with a habit. In our

simulations, completing each trial requires 4 choices. In contrast to

Figs. 4 B, 5 B is colour-coded to illustrate when, during a trial (i.e.,

at the 1st, 2nd, 3rd or 4th choice) choice is habitised. The results

show that choice is under deliberative control in the first trials, as

in the first scheme. From the 5th trial, the agent begins to habi-

tise the last part of the trial (i.e., the 4th choice) and successively

earlier parts of the trial (i.e., the 3rd choice). This means that, over

time, the agent becomes more confident about the best policy ear-

lier in the trial – although with our choice of parameters (e.g., the

90% threshold) choice is never habitised from the beginning of the
Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching

puting, https://doi.org/10.1016/j.neucom.2019.05.083 
rial. In short, this scheme underwrites a progressive reduction of

omputational time, which is modestly longer, on average (0.006

 .) than the first scheme. 

A further difference emerges if one considers that the current

cheme is slightly slower in reaching the threshold for habitisation,

oth before and after a changing context: compare Figs. 4 C and 5 C.

hile the first scheme considered the context inferred on the last

rial (e.g., state 17), the second scheme only considers the (agent’s

elief about the) next states it can visit, which have on average

ower policy values. It thus takes longer for this scheme to reach

he threshold for habitisation. For the same reasons, policy prob-

bilities are generally greater in this second scheme compared to

he first (compare Figs. 4 E and 5 E); this is especially evident in the

rst states visited by the policy (e.g., state 4 after the contextual

hange), which are important in this second scheme but somewhat

rrelevant in the first. Of course, it would be possible to compen-

ate for the slight decrease of performance of the second scheme
 mechanisms for habit formation in Active Inference, Neurocom- 

https://doi.org/10.1016/j.neucom.2019.05.083


D. Maisto, K. Friston and G. Pezzulo / Neurocomputing xxx (xxxx) xxx 9 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; June 13, 2019;8:35 ] 

Fig. 6. Simulation results of Scheme 3. Panels conform to the same format as in Fig. 4 . 
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y setting a lower threshold for habitisation, or a “relative” thresh-

ld that compares the probability of the first and second-best poli-

ies (e.g., a policy would be selected if it is 90% more probable

han the second-best). 

.3. Scheme 3: using the cache during policy evaluation 

This third scheme is similar to the second, but uses cached val-

es during policy evaluation (stage C, illustrated in Fig. 2 C), not

uring planning. In Active Inference, evaluating the G π value of a

olicy requires a path integral of the expected free energy under

hat policy (see A.1 for details). Using the third caching scheme,

he agent terminates the path integral when it finds a policy for

hich E ˆ s (τ ) [ P (π | s )] , the expected value over ˆ s (τ ) of the policy

robability, is higher than 0.9, and selects this policy. Otherwise,

t completes the path integration normally and updates the cache.

his scheme has thus some analogies with algorithms in artifi-
Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching

puting, https://doi.org/10.1016/j.neucom.2019.05.083 
ial intelligence that perform “moderate” forward search, until they

nd a reliable cached value or chunk [7,30,38,59] . 

As shown in Figs. 6 , accuracy (Panel A) and the probability of

he best policy (Panel C) rise slightly more slowly in this scheme

ompared to the previous scheme. However, the values reached by

he habitual policy (Panel C) are slightly higher than the second

cheme, and comparable with the first. This is because the third

cheme performs prospective predictions (during the policy eval-

ation) and, like the first scheme, can potentially tap the (higher)

robability values cached under the terminal states (e.g., states 17

nd 40). As in the second scheme, in the third scheme deliber-

tive and habitual choice can coexist in the same trial. However,

hile in the second scheme, habits were most common for the

ast part of the trial (i.e., the 3rd and 4th choices), here they are

qually common throughout the trial (i.e., the 1st, 2nd, 3rd and 4th

hoices). This difference can be seen by comparing Figs. 5 B and 6 B.

he ability to habitise the initial parts of the trial depends, again,

n the fact that this scheme performs prospective counterfactual
 mechanisms for habit formation in Active Inference, Neurocom- 
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predictions. It is also evident in Panel C that the probability of the

best policy drops significantly after the contextual change in trial

21; reflecting the fact that the relative values of policies are low at

that point. Finally, computational time is variable across trials, with

a mean time execution for a single trial equal to 0.0083 s . Given

that this scheme uses policy evaluation more often, it is slightly

slower than the previous schemes. 

5. Discussion 

We have considered the possibility that an Active Inference

agent caches (i.e., memorizes) the probability of policy (under the

current state) from previous trials, in order to reduce the compu-

tational costs required to calculate them anew at each new trial.

Using caching methods, either in isolation or in combination with

search-based methods, is popular in various areas of reinforcement

learning [78,79] , machine learning and artificial intelligence [30] ,

especially when it is necessary to address large state spaces. How-

ever, caching per se is not without costs: human and animal ex-

periments have shown that caching (and more generally reusing

old solutions to address new problems) can come at the expense of

(relative) behavioural inflexibility in the face of contextual changes,

which is typically associated with habitisation and/or automatic

action control [3,47] . Animals and artificial control systems thus

face the problem of trading-off the flexibility of deliberative strate-

gies and the parsimony of habitual strategies, and need adaptive

strategies to transfer control between them. 

In the novel approximation of Active Inference illustrated here,

the agent caches the probability of its policies, which are cal-

culated as a function of their expected free energy G π is state-

specific (i.e., what is cached is a Softmax function of G π , for each

state). Of note, the expected free energy G π of policies used here

is estimated on the fly using deliberative inference. Despite we

heuristically refer to G π as a “value” of policies, it is different

from the notion of a value function (of actions or action-states)

in model-free reinforcement learning, which is usually learned by

trial and error [82] . 

To motivate the novel caching scheme, we have exploited the

fact that the quality of policies, conditioned upon hidden states,

is constant over trials; provided contingencies and prior prefer-

ences do not change. In brief, this means the only quantity that

can change policy selection is the prior distribution over the initial

state – where this prior is based upon the posterior beliefs from

previous trials (e.g., one can infer a contextual change from the fact

that it has failed to collect a reward in the usual location). Thus,

an agent that caches the quality (or the probability) of policies can

safely reuse these values, unless a contextual change occurs. This

leads naturally to a theory of habit formation, in which habitual

policies form by caching the computations of a deliberative con-

troller [11,12,23,60] . 

We have illustrated three possible uses of caching, each asso-

ciated with a specific aspect of active inference: action selection,

planning and policy evaluation. Although these are just examples

of the many possible uses of a cache, they have analogies with

theories that emphasize that habitual behaviour eschews inferen-

tial processes entirely (first scheme), that one can combine de-

liberation and habits even within a single task or a single trial

(second scheme), and that one can perform a limited or “mod-

erate” forward search until one finds a reliable cached value, see

[7,30,38,47] . 

The three caching schemes explored produce similar behavioral

results; but yet there are some differences amongst them, which

might reflect different kinds (or phases) of habitisation. The first

scheme is slightly faster than the other two, as it uses the cached

values to elude the inferential mechanisms of active inference –

a “trick” that can however produce maladaptive behavior, if con-
Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching
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exts are varied too often. In other words, this scheme would fail

o update a policy at the beginning of a new trial, even if it is

ued about a contextual change, producing inflexible perseveration.

onsider the case of a person who uses the same coffee machine

very morning. Even if one day he was told that the coffee ma-

hine is broken, he would fail to assimilate the contextual change

nto his policy selection and thus follow the usual habit (e.g., to

ry operating the coffee machine). The second and third schemes

re less prone to this problem, because they consider the current

ontext before selecting an action. However, unlike the full active

nference, the second and third schemes do not update the value

f policies based on all available knowledge, and might fail when

ome contingencies change more quickly than the update of the

ache (e.g., if the coffee machine is moved, they might sometimes

o to its previous location). Furthermore, given that these schemes

mplement a form of bounded search for (cached) policy probabil-

ties, they may become stuck in local minima; for example, they

ight select a suboptimal policy that reaches a smaller but prox-

mal reward, rather than an optimal policy that reaches a bigger

ut more distal reward. These problems are exacerbated by the fact

hat an agent using caching mechanisms does not explore properly.

n active inference, the balance between exploration and exploita-

ion depends on the relative importance of epistemic and prag-

atic values, which are jointly considered during policy evaluation

26] . Using caching mechanisms prevents updating policy values

n the correct way when epistemic value changes, thus leading to

uboptimal exploration. All these phenomena – perseveration, in-

ensibility to contingency changes, short-sightedness and subopti-

al exploration – have been variously associated with habitual be-

aviour. The fact that they may be partially dissociated under the

ifferent caching schemes explored here suggests that one can use

hese methods to probe the existence of different kinds of habits

n humans and other animals. 

Most theories of habits emphasize reduced behavioural variabil-

ty, too [84] . In keeping, the caching methods explored here reduce

ariability of behavior. However, in active inference, action selec-

ion tends to become deterministic over time, when uncertainty

ecreases, even without caching or the transfer of control to a ha-

itual controller. This is due to the convergence of various factors.

irst, the G π value computations become increasingly more simi-

ar over time, given that the context does not change (this is why

t is possible to cache them). Second, policy precision increases

ith time, as uncertainty about the current context decreases. Pol-

cy precision plays the role of the temperature parameter in the

oftmax used for action selection; hence, the higher the precision,

he more action selection becomes deterministic. Finally, epistemic

alue tends to disappear as uncertainty about the prevailing con-

ext decreases, further reducing the need for exploration [26,53] .

ence, in Active Inference, reduced behavioural variability does not

ecessarily imply a habit or the transfer of control from deliberate

o habitual mechanisms. 

Another hallmark of habits is inflexibility in the face of con-

extual changes. The general idea is that, if there was a trans-

er of control from deliberative to habitual (or automatic) mecha-

isms, an agent should not readapt its behaviour to novel circum-

tances (e.g., a change in reward contingencies), and/or it would

ail to transfer back control from habitual to deliberative mecha-

isms when necessary. Here, however, there is an important differ-

nce between the behavioural paradigms that are used in animal

earning (e.g., devaluation after overtraining, see [3] ), which show a

omplete inflexibility after overtraining, and the somewhat less ex-

reme situations that everybody experiences; e.g., recall the driver

xample in the introduction, in which a contextual change or a

ossible danger is detected, albeit with some delay, even when one

s under automatic control [47] . We argue that these two situations

an be reconciled if one considers the important role of context
 mechanisms for habit formation in Active Inference, Neurocom- 
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onitoring (Panels H of Figs. 4–6 ). In our simulations, the agent

onitors the current context even when it uses cached policy val-

es. Shortly after a contextual change, it perseverates with the

rong behaviour, because it fails to notice the contextual change

this occurred in our simulations in trials 21–24). However, after

hat it can transfer control back to deliberative mechanisms [47] .

otice that the agent is relatively impaired for a few trials after a

ontextual change, because it has to estimate the next context and

nd a good policy to deal with it – by exploring under the control

f deliberative mechanisms. However, the agent does not show the

trong form of inflexibility that is sometimes reported in the ani-

al learning literature [3] , with a long-lasting perseveration, even

hen contextual changes are cued. The second and third approx-

mate active inference schemes illustrated above are especially re-

istant to excessive forms of behavioral inflexibility, as they explic-

tly consider their current context before action selection and can

hus more easily monitor contextual changes. 

One might speculate that the strongest forms of inflexibility

emonstrated in the animal learning literature (for example, af-

er overtraining) depend on a failure of monitoring contextual

hanges, which precludes transfer from habitual to deliberative

ontrol. Indeed, overtraining creates the preconditions for reduced

ontextual monitoring (in addition to habit formation), by biasing

owards an underestimate of the volatility (or rate of change) of

he environmental contingencies. This follows because, if the ani-

al always operates in the same environment, its prior belief that

he context will change may become extremely low – and it thus

ay fail to infer (or attend to cues) that the context has changed;

r to update appropriately its contextual estimation based on novel

vidence [26,51] . This hypothesis may explain why overtrained an-

mals become insensitive to reinforcer devaluation and other pro-

edures that assess the balance between habitual and deliberate

hoice [3,4,9,31,32] . 

From the perspective of active inference, this sort of context in-

ensitivity emerges as a consequence of treating policy selection

s Bayesian model selection. In other words, by associating poli-

ies with models of ‘how to behave’ one can articulate a failure

o consider certain models (e.g., a goal directed policy) in terms

f Ockham’s window. Ockham’s window provides a range of prior

robabilities that identify a set of models from which one is se-

ected. If the habitual policy is, a priori, sufficiently more likely

han any other policy, it effectively precludes alternative policies

rom consideration. Future experiments that distinguish policy se-

ection from context monitoring may help test these and other

deas. 

It is worth noting that the forms of habit selection explored in

his paper will only work when the following conditions hold: (1)

he probability transitions under each policy are known; (2) the

rior preferences are fixed; (3) each state is visited once and only

nce; (4) one of the policies entertained by the agent is a poten-

ial habit. These conditions constitute the requirements for a state-

ction policy. In other words, if there is a unique ‘best’ policy from

ny (initial) state, then it is possible to identify and select this pol-

cy given precise beliefs about the initial state (and cashed G π or

robability values). In a previous work [23] , we considered a re-

ated problem, in which the optimal habit is not included in the

epertoire of policies – but can be learned using sequential pol-

cy optimisation (i.e., goal directed active inference via estimat-

ng G π values at each time point). This allows de novo habits to

e learned under the hierarchical supervision or contextualisation

f goal directed active inference (with sequential policy optimisa-

ion). In other words, agents can learn habits through minimising

heir expected free energy – and then select them from an aug-

ented repertoire of policies, in a way that resembles the first

cheme presented above (i.e., skipping planning and policy eval-

ation procedures). Both the caching method presented here and
Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching

puting, https://doi.org/10.1016/j.neucom.2019.05.083 
he policy learning method presented in [23] aim at exploring the

arious ways humans and other animals can implement intentional

ctions, while (under certain conditions) alleviating the computa-

ional burden of deliberative processing. 

It is possible to merge these approximate active inference

chemes or design new ones that enhance the agent’s performance.

or example, it would be easy to design caching mechanisms that

ombine elements of the first and the second scheme, in which (1)

nly one policy is cached for each context, with a probability that

as in the first scheme – reflects the value of the policy at the

ast state experienced under each context (e.g., state 17 for context

 and state 40 for context D), (2) the agent estimates its current

tate / context, as in the second scheme. This scheme would give

ehavioural results that are similar to the first policy (results not

hown), but will be less prone to rapid contextual changes after

earning the most appropriate policy in each context. In the set-

ing of this article, we were not interested in testing all the possi-

le caching schemes or variants, but in demonstrating the utility of

aching in the transfer control from deliberate to habitual mecha-

isms, and vice versa, as a function of confidence in the current

ontext and policy – and to understand when and why behaviour

ecomes inflexible. 

These problems have been widely addressed in other domains

uch as biological and computational (reinforcement) learning. Be-

ow we illustrate the main similarities and differences between our

roposal and related schemes in reinforcement learning. 

.1. Relations with previous theories of goals and habits 

Our proposal differs in many respects from widespread con-

eptualizations of goals and habits in brain and behavior [15] . A

ommon assumption in the literature is that deliberative and ha-

itual strategies of choice may correspond to two different con-

rol schemes that operate in parallel and compete in the brain.

n particular, the multicontroller hypothesis proposes that control

an be flexibly allocated to one of two controllers, one for delib-

rative and one for habitual choice, based on their relative uncer-

ainty [10] . These two controllers map to model-based and model-

ree methods of reinforcement learning, respectively. While the

ormer (model-based) method entails a form of prospective evalua-

ion of future rewards, the latter (model-free) method uses cached

ction values for action selection. The multicontroller framework

hus explains the transfer of control from deliberative to habitual

hoice on the basis of the fact that, in general, the model-based

ontroller has lower uncertainty in early trials, and the model-free

ontroller in later trials [15] . Recent developments of this heuris-

ic have shown that – from both a computational and a biologi-

al perspective – the two controllers might be combined and real-

ze a continuum [40,48,59] or a hierarchy [12,60] , rather than be-

ng strictly separated or alternative. Furthermore, it has been sug-

ested that model-based and model-free controllers might operate

equentially rather than in parallel, and it is only when model-

ree mechanisms are insufficient that model-based computations

re used to complement them – thus realizing a mixed controller

62] . Finally, it has been argued that the arbitration between delib-

rative and habitual modes might not depend on uncertainty only,

ut on more complex forms of cost-benefits computations [37,59] . 

Our proposal shares some similarities with the multicontroller

ypothesis (and related views), such as the idea of mapping delib-

rative and habitual mechanisms into distinct computational pro-

esses; and the fact that environmental uncertainty is one of the

actors determining the transfer of control from deliberative to ha-

itual strategies, and vice versa. However, our proposal differs from

he multicontroller hypothesis, in many respects. 

In the framework described here, deliberative processing maps

o active inference, whereas habitual processing results from
 mechanisms for habit formation in Active Inference, Neurocom- 
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caching deliberative policies – or, when they are not sufficient,

learning habitual policies on top of previous deliberative choices

[23] . This view has a number of implications. First, the distinction

between deliberative and habitual schemes maps to a mechanistic

distinction between belief-based (active inference) and belief-free

schemes. In the current implementation, which uses cached policy

probabilities, the latter (belief-free) scheme is essentially stimulus-

response, and is thus value-free; i.e., it does not explicitly include

state value representations [23,44,60] . This is markedly different

from the idea that habitual mechanisms correspond to model-free

RL, which uses cached action values [10] . The perspective advanced

here is thus more compatible with recent theories that cast doubt

on the fact that value representations are central to habits and

propose that habits encode stimulus-response pairs instead; see

[43,44,84] for a recent review. 

Furthermore, our schemes suggest that the transfer of control

from deliberative to habitual processing may depend on the in-

creased reliability of cached policies, when contingencies do not

change, whereas the transfer of control from habitual to delibera-

tive processing is not immediate but calls on a contextual estima-

tion. Note that in these schemes, there is a unique mechanism (or

threshold) that determines the passage from deliberation to habits,

and vice versa. This is because the cached policy probabilities that

generate habits are associated with specific states or contexts. If

the agent is in a state for which a cached policy probability ex-

ceeds the threshold, it can select it direcly – thus instantiating

a transition from deliberative to habitual choice. However, if the

agent detects a contextual change to a state for which none of its

policy probabilities exceed the threshold, then it has to use full

active inference – thus determining a transition from habitual to

deliberative choice. The same transition can occur when the agent

becomes unsure about what state it is in. This points to the recog-

nised link between environmental uncertainty and deliberative be-

haviour. In turn, this implies that if an agent under habitual con-

trol keeps monitoring (the consequences of) its behaviour [47] , it

can detect surprises – (e.g., the fact that an expected cue or re-

ward was not observed) and contextual changes – and thus trans-

fer control. It may be thus the failure to appropriately monitor and

update contextual information, and not just the use of a habit, that

underwrites behavioural inflexibility. 

Another implication of our proposal is that deliberative and ha-

bitual choices are not learned in parallel, as assumed by the multi-

controller view [10] , but rather, the latter derives from (caching)

the former. In other words, deliberative strategies are acquired

first and scaffold the acquisition of habitual strategies. For exam-

ple, habitual strategies may derive from a sort of “compression”

or “caching” of deliberative strategies (e.g., by chunking action

sequences) that entail a more parsimonious use of cognitive re-

sources while preserving accuracy – at least when the agent has

no residual uncertainty about the environment [11,12,23,49,60,61] .

This leads us to the next point, which concerns the relations be-

tween our scheme and Bayesian model selection or averaging. 

5.2. Relations with Bayesian model selection (or averaging) 

As discussed above most reinforcement learning theories as-

sume that model-based and model-free controllers learn in par-

allel, our formulation is more related to the alternative view that

habitual policies derive from the progressive simplification or com-

pression (via caching, chunking or other methods) of a deliberative

controller [12,23,60] . The general idea is that simplifying the com-

putations (or reducing the generative model) required for the full

active inference is yet another way to minimize free energy. In the

present study, the simplification consists in caching policy proba-

bilities. However, there are other alternative ways to simplify ac-

tive inference. A previous simulation has shown that an active in-
Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching
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erence agent can progressively acquire state-action (or stimulus-

esponse) policies that can be directly activated by stimuli rather

han by internal inferential processes [23] . Another possibility con-

ists in using minimal predictive controllers that are much reduced

ompared to the (relatively) sophisticated generative model con-

idered in our simulations, but yet are sufficient to guide simple

orms of adaptive behaviour [18] . Interestingly, these methods to

implify inference have close connections with Bayesian model se-

ection (or averaging). 

Indeed, there is a close connection between policy selection and

ayesian model selection (or averaging). This follows from the fact

hat the expected free energy ( G π ) value is the expected log model

vidence or marginal likelihood, under each policy. Therefore, in

ctive inference, selecting a policy corresponds to Bayesian model

election, where the quality of a policy becomes the evidence for

hat policy, expected under current beliefs about the state of the

orld. This means that there is a graceful link between policy se-

ection, the balance between goal directed and habitual behaviour

nd the notion of Bayesian model selection or averaging in de-

ermining the best action. Previous work has explored the idea

hat control can be allocated amongst various internal models by

eighting the accuracy and complexity of the candidate controllers

18] . The balance between full deliberation and habits explored

ere can be described in an analogous way. However, here we have

onsidered the possibility that the simplest controller is not based

n an internal generative model as in [18] but potentially a model-

ree construct such as a list of (cached) policy probabilities under

ifferent contexts (consider Panels E in Figs. 4–6 ). 

Furthermore, it is possible to cast the model-selection process

s a serial evaluation process, which only considers the more com-

lex (e.g., deliberative) model if it has any chance to improve over

he simpler model (e.g., in the cache), given knowledge of the

urrent state. In other words, it is only when the simpler model

s judged insufficient that a more complex model is considered,

hus saving on computational resources [62] . In slightly more for-

al terms, one can imagine that the agent has a priori knowl-

dge of the ratio of complexity of the two models (say, the sim-

ler model has 2/3 the complexity of the more complex model).

his would imply that the agent could automatically set a thresh-

ld of accuracy for engaging the simpler model (in this case, 67%).

ndeed, if the ratio of the accuracies is 2/3 in favour of the sim-

ler controller, and the simpler controller has 67% accuracy, its

odel selection (accuracy vs. complexity) score would be higher

f the more complex model, even if this model has 100% accu-

acy (because 67/100 > 2/3). Analogously, if one considers a hier-

rchical active inference architecture, one can imagine that sim-

ler controllers are lower in the hierarchy and are able to steer

ction when their accuracy or precision is sufficiently high. When

his is not the case, more complex controllers that are higher

n the hierarchy are also engaged and contextualize action selec-

ion [54,60] . One can also look at this model selection problem

he other way around, and consider that deliberative processing

ay be engaged when possible, but there may be conditions (e.g.,

ual tasks or mental fatigue) that prevent doing so [50] . In all

ases, the model selection problem can be modelled in terms of

 cost-benefit trade-off between resources required (e.g., complex-

ty and/or its proxy that we measured used here: computational

ime) and accuracy of deliberative or habitual schemes. 

A more abstract take on this issue derives from the imperative

o minimise the path or time integral of free energy. If we con-

ider natural selection as a form of (hierarchical) Bayesian model

election, then computational efficiency becomes operationally im-

ortant – and a key determinant of the time integral of free en-

rgy [21] . This means that agents or phenotypes that can minimise

ree energy quickly will be selected over agents that do not. Tech-

ically, this is just a restatement of Hamilton’s principle of least
 mechanisms for habit formation in Active Inference, Neurocom- 

https://doi.org/10.1016/j.neucom.2019.05.083


D. Maisto, K. Friston and G. Pezzulo / Neurocomputing xxx (xxxx) xxx 13 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; June 13, 2019;8:35 ] 

a  

a

5

 

l  

c  

d  

s  

h  

e  

r  

W  

l  

c  

t  

F  

a  

“  

t  

i  

s

 

e  

s  

e  

o  

d  

d  

o  

i  

a  

O  

i  

g  

T

 

b  

g  

s  

t  

h  

t  

t  

h

b  

t  

t  

(  

a  

N  

e  

u  

t  

s  

d  

p  

(  

h  

i

 

t  

i  

a  

p

D

A

 

H  

u  

P  

P  

T  

C

A

 

b  

P

 

 

 

 

 

 

p  

i  

(  

p  

t  

e  

t  

d  

T  

d  

c  

i  

r

A

 

p  
ction, because the time integral of free energy is a Hamiltonian

ction. 

.3. Relations with neurophysiology 

It is widely assumed that, at the neurophysiological level, de-

iberate and habitual control might use partially different neuronal

ircuits, engaging for example dorsolateral striatum for habits and

orsomedial striatum for deliberation and forward search [15] (but

ee [41] for evidence for a more integrative view). Habitisation

as been associated with the transfer of control to the dorsolat-

ral striatum, where neural representations of habits have been

eported that bear an important similarity with our simulations.

hen a rat performs a new task, these neurons only fire at reward

ocations; but this activity “shifts” back (gradually) to the start lo-

ation when the task is routinised [34] . This behaviour is similar

o changes in policy values at the start location (states 1 and 4 in

igs. 4–6 ). When a habit has been selected, these neurons fire both

t start and goal location – a phenomenon that has been termed

task bracketing” [80] . While firing at start locations may be linked

o action selection, firing at the end of the trial might reflect pol-

cy value or contextual updates – of the kind that characterise the

chemes described above. 

The neuronal underpinnings of deliberate and habitual choices

xtend beyond the striatal areas described above and include other

ubcortical and cortical networks [15,52,63,68] . For example, sev-

ral studies have showed that lesions to orbitofrontal cortex (OFC)

r basolateral amygdala render animals insensitive to reinforcer

evaluation and promote behavioural inflexibility [4,31,65,66] . As

iscussed above — in the schemes proposed here — severe forms

f behavioural inflexibility may stem from the failure of monitor-

ng contextual changes or of updating state estimations appropri-

tely. It is possible to speculate that lesions to structures like the

FC and the amygdala may compromise these functions, thus mak-

ng animals unable to adapt to changes in task and reward contin-

encies – and ultimately to deploy flexible goal-directed behaviour.

hese ideas remain to be fully tested in future studies. 

Another open question is whether a central arbitrator (possi-

ly in frontal cortices [40,69] ) monitors the opportunity to en-

age deliberative mechanisms; using something analogous to the

imple threshold-passing method described here. A possible al-

ernative is that the balance between deliberate and habitual be-

aviour depends on a more hierarchical and distributed architec-

ure, in which higher hierarchical layers (encoding more delibera-

ive mechanisms) contextualize lower hierarchical layers (encoding

abitual patterns that can be triggered by environmental cues) –

ut the latter can become relatively insensible to the former when

hey acquire sufficient precision [60,61] . Either way, at some point

he neural system would engage model-based planning and the

serial) evaluation of candidate policies, possibly in prefrontal areas

nd – at least in spatial tasks – the hippocampus [8,57,59,62,64,69] .

ote that the deliberative system can be engaged off-line, too; for

xample, to support memory consolidation and to train the habit-

al system [39,56,79] . This would allow to cache policy expecta-

ions even before an actual choice has to be made (e.g., during

leep or between decision episodes rather than prior to an actual

ecision) – hence effectively em ploying (costly) model-based com-

utations to form cached memories for future use, rather than for

or in addition to) on-line decision and planning. This mechanism

as been often linked to internally generated hippocampal dynam-

cs and the “replay” of experience [13,20,57,75] . 

Future studies are required that test these ideas, by assessing

he conditions that promote the engagement deliberative process-

ng; the transfer of control from deliberative to habitual processing,

nd vice versa; and the relative importance of model-based com-

utations for on-line and off-line uses. 
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ppendix A. Mathematical formulation of Active Inference 

Active Inference in discrete time and with discrete states can

e described as a partially observable Markov decision process or

OMDP. It is defined as a tuple ( P, Q, R, S, A, U , �) where 

• � is a finite set of observations o 

• A is a finite set of action a 

• S is a finite set of hidden states s 

• U is a finite set of control states u 

• R is a probability distribution over ˜ o ∈ �, ˜ s ∈ S and ˜ a ∈ A — re-

spectively sequences over time of observations, hidden states

and actions — generated by a generative process and such that: 

R ( ̃  o , ̃  s , ̃  a ) = Pr ({ o (0) , . . . , o (t) } = 

˜ o , { s (0) , . . . , s (t) } = 

˜ s , 

{ a (0) , . . . , a (t−1) } = 

˜ a ) 

• P , the generative model , is a probability distribution over ˜ o ∈ �,

˜ s ∈ S, policies π j , j = 1 . . . , K — where π j returns a sequence of

control states { u (t) , . . . , u (T ) } ≡ { π(t) 
j 

, . . . , π(T ) 
j 

} — and parame- 

ters θ, such that: 

P ( ̃  o , ̃  s , π j , θ ) = Pr ({ o (0) , . . . , o (T ) } = 

˜ o , { s (0) , . . . , s (T ) } = 

˜ s , 

{ u 

(0) , . . . , u 

(T ) } = π j , θ = θψ 

) 

with parameters θ ; 

• Q is an approximate posterior over hidden and control states

and a variable γ ∈ R denoted as precision , such that: 

Q( ̃  s , π j , γ | μ) = Pr ({ s (0) , . . . , s (T ) } = 

˜ s , { u 

(t) , . . . , u 

(T ) } = π j ) 

with sufficient statistics (posterior expectation) ˆ μ = ( ̂ s , ˆ π, ˆ γ ) . 

Active inference rest on a continuous interplay among three

robability distributions: the former ( generative process ) describ-

ng the external environment and its dynamics, and the latter two

 generative model and approximate posterior over hidden states and

arameters) describing internal dynamics of an agent. The genera-

ive process describes how transitions between hidden states of the

xternal environment generate the observed outcomes through ac-

ions. In turn, these actions correspond to control states which are

etermined based on the agent’s beliefs about the next state(s).

hese beliefs are generated within the agent’s generative model that

escribes how the agent represents the environment and his ex-

hanges with it. However, to circumvent the intractability of exact

nference, the beliefs are expectations from an approximate poste-

ior of the full generative model; as explained below. 

.1. The generative model 

In term of Markov decision process, the generative model, with

arameters θ = { A , B , C , D , α, β} can be dynamically expressed
 mechanisms for habit formation in Active Inference, Neurocom- 
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as: 

P ( ̃  o , ̃  s , π j , γ ) = P (π j ) P (γ ) P ( ̃  o | ̃  s ) P ( ̃  s | π j ) 

where 

P ( ̃  o | ̃  s ) = 

t ∏ 

i =0 

P (o (i ) | s (i ) ) (A.1)

P ( ̃  s | π j ) = P (s (0) ) 
t ∏ 

i =1 

P (s (i ) | s (i −1) , π j ) 

The first equality expresses the model as joint distribution that

comprises conditional densities and empirical priors. The two ex-

pressions P ( ̃  o | ̃ s ) and P ( ̃ s | π j ) establish that observations exclusively

depend upon the co-occurrent hidden states; and that dependen-

cies between successive hidden states are Markovian, respectively. 

A generative model can be parameterised in a general way as

follows: 

P (o (t) | s (t) ) = A (A.2a)

P (s (t+1) | s (t) , π j ) = B 

(
u 

(t) = π(t) 
j 

)
(A.2b)

P (o (τ ) ) = C (A.2c)

P (s 0 ) = D (A.2d)

P (π j ) = σ (γ · G π ) (A.2e)

P (γ ) ∼ �(α, β) (A.2f)

Accordingly, A encodes the likelihood of observations given the

state ( Eq. A.2a ) while the prior distributions over initial state and

future outcomes are encoded in Eqs. (A.2d) and ( A.2c ), respec-

tively with matrices D and C . State transitions are encoded with

B and depend on policy ( Eq. A.2b ) whose distribution ( Eq. A.2e )

is attained from a softmax function σ ( · ) of the inner product

( A · B = A 

T B ) between its expected free energy G π and the preci-

sion γ sampled from a � distribution with parameters α and β
( Eq. A.2f ). 

The quantity expressed with G π deserves more attention. It can

be considered as the quality of a generic policy π j and substan-

tially plays the role of (prior) beliefs over the policy, with respect

to the current state and the preferred outcomes. These beliefs rest

on (preferred) outcomes in the future, because these beliefs de-

termine action and action determines subsequent outcomes. This

means that policies should, a priori, minimise the free energy of

beliefs about the future – i.e., an expected free energy. Formally,

it is possible determine this quality value by using with the path

integral 2 (from the current at time t to the final state at time T ) of

free energy expected under the policy π j [26] : 

G π = 

T ∑ 

τ= t 
G(π j , τ ) (A.3)

where 

G(π j , τ ) = −E ˜ Q 

[
H 

[
P (o (τ ) | s (τ ) ) 

]]
− D KL 

[
Q(o (τ ) | π j ) || P (o (τ ) ) 

]

(A.4)
2 This idea follows a formulation of quantum mechanics formulated by Feynmann 

[17] in terms of a generalisation of the least action principle of classical mechanics. 

In this formulation, the behaviour of a quantum system is described by considering 

a composition over an infinity of potential trajectories, instead of a unique one as in 

classical mechanics. Path integral methods have been recently applied to a general 

class of control problems, to measure the cost of the optimal decision for rational 

agent [6] . 

s  

i

A

 

t  
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nd 

˜ Q = Q(o (τ ) , s (τ ) | π j ) . The above expression can be expressed in

erm of the generative model and taking a more compact and sim-

ler form: 

 π = 

T ∑ 

τ= t 

(
H · ˆ s (τ ) 

π − ( ln ̂

 o (τ ) 
π − lnP (o (τ ) )) · ˆ o (τ ) 

π

)

ˆ 
 

(τ ) 
π = B 

(
u 

(τ ) = π(τ ) 
j 

)
· ˆ s (τ ) 

ˆ 
 

(τ ) 
π = A · ˆ s (τ ) 

π

nP (o (τ ) ) = ln C τ

 = −(A × ln A ) (A.5)

here “ × ” denotes a product element-by-element. Note that two

erms in Eq. (A.5) represent ambiguity (i.e., uncertainty about out-

omes, in relation to the state of the world) and risk (i.e., relative

ntropy or uncertainty about outcomes, in relation to preferences),

espectively; where utility lnP ( o τ ) is a vector of preferences over

uture outcomes. 

.2. The approximate posterior 

In general, Bayesian inference using the full generative model is

ntractable. To circumvent this problem, active inference appeals to

pproximate (variational) inference using an approximate posterior

ather than the full generative model. 

Therefore, after having specified the shape of the genera-

ive model, it is necessary to specify its approximate posterior

( ̃ s , π, γ | μ) – for which we need to find the sufficient statistics

= ( ̂ s , ˆ π, ˆ γ ) ∈ R 

+ that minimise free energy. The role of the suffi-

ient statistics μ is to allow the factorisation of the approximate

osterior into marginal distributions that reduce the size of the

tate space (thus render inference tractable) by replacing posterior

ependencies among hidden variables. 

By exploiting the Markovian dependencies among successive

tates, we can assume that, at each time t , the approximate pos-

erior can be factorised over past hidden states, future control and

recision: 

 

(
ˆ s , ˆ π, γ | μ)

= Q 

(
s ( 0 ) | ̂ s ( 0 ) 

)
. . . Q 

(
s ( t ) | ̂ s ( t ) 

)
Q 

(
u ( t ) , . . . , u ( T ) | ̂  π

)
Q 

(
γ | ̂  γ )

(A.6)

here 

(s (t) = i | ̂ s (t) ) = ˆ s (t) 
i 

with 

∑ 

i 

ˆ s (t) 
i 

= 1 

( ̃  u ≡ πk | ̂  π) = ˆ πk with 

∑ 

k 

ˆ πk = 1 

(γ | ̂  γ ) ∼ �(α, ˆ β = α/ ̂  γ ) 

Eq. (A.6) represents the mean field assumption by means of

hich the approximate posterior Q can factorise over its parame-

ers [35] . Note that because we have used the Markovian property

f the generative model, this is not an approximation – except for

recision, given the existence of conditional dependencies between

recision and hidden states. 

Equipped with the generative model ( Eq. A.1 ) and the approxi-

ate posterior with the mean field assumption ( Eq. A.6 ), it is pos-

ible to minimise variational free energy and solve the Bayesian

nference. 

.3. Free energy and variational Bayes inference 

Active inference rests on free energy minimisation with respect

o sufficient statistics (expectations) of the approximate posterior
 mechanisms for habit formation in Active Inference, Neurocom- 
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end for 
bout hidden states, control states (policies) and precision. More

recisely, active inference assumes that, given the free energy: 

 ( ̃  o , μ) = E Q [ − ln P ( ̃  o , ̃  s , π, γ ) ] − H [ Q( ̃  s , π, γ | μ) ] (A.7)

here exist sufficient statistics ˆ μ that minimise F : 

ˆ t = arg min 

μ
F ( ̃  o , μ) 

uch that the ensuing beliefs about control states comprised in the

olicies prescribe current action: 

 r 
(
a (t) = u 

(t) 
)

= Q 

(
u 

(t) | ̂  μ(t) 
)

ayesian inference (which consists in calculating posterior from

rior beliefs) thus turns into an optimisation problem – where we

eed to find out the values ˆ μt that minimise the objective function

epresented in Eq. (A.7) . 

Sufficient statistics, and implicitly Bayesian estimations of hid-

en variables, are obtained by iterating the following updating

quations (see Appendix B of [26] for details): 

ˆ 
 

(t) ≈ σ
(
ln A · o (t) + ln (B 

(
a (t−1) 

)
· ˆ s (t−1) ) 

)

ˆ π = σ ( ̂  γ · G π ) 

ˆ γ = 

α

β − G ˆ π
(A.8) 

he first equation updates expectations about hidden states and

orresponds to perceptual inference or state estimation (note that

he dependency of value on expected states – or optimism – bias

as been ignored for simplicity, given it is not numerically rele-

ant). 

The second update is a softmax function of the value of each

olicy, where the sensitivity parameter is an increasing function of

xpected value. This means that the sensitivity, or inverse tempera-

ure, that determines the precision with which a policy is selected,

ncreases with the expected value of those policies. This essentially

enders action selection more deterministic when better policies

re available. 

The third update optimises expected precision. As can be easily

ppreciated, if an observation increases the expected value of the

olicies entertained by an agent, then expected precision increases

i.e., temperature decreases) and the agent is implicitly more con-

dent in selecting the next action. Minimization of free energy ap-

eals to the iteration of these three updates are – which have also

ice correspondences in terms of brain dynamics, see [24] . 

ppendix B. Pseudocode of Active Inference 

for t from 1 to T do 

compute expectations about hidden states ˆ s (t) 

for j from 1 to K do 

G π j 
← 0 

for τ from t to T do 

estimate ˆ s ( τ ) and ˆ o (τ ) 

G π j 
← G π j 

+ G 

(
π j , τ

)

end for 

end for 

compute expectations ˆ π and ˆ γ
assess a (t+1) from Q 

(
π | ̂ s (t) , ˆ π, ˆ γ

)

sample s (t+1) and o (t+1) 

end for 

ppendix C. Pseudocodes of the proposed caching Active 

nference schemes 

.1. Pseudocode of Scheme 1 

if max π E (T ) [ P (π | s )] > p th then 
ˆ s 

Please cite this article as: D. Maisto, K. Friston and G. Pezzulo, Caching
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for t from 1 to T do 

π∗ = arg max π E ˆ s (T ) [ P (π | s )] 

get a (t+1) by means of π∗
determine s (t+1) and o (t+1) 

end for 

else 

for t from 1 to T do 

compute expectations about hidden states ˆ s (t) 

for j from 1 to K do 

G π j 
← 0 

for τ from t to T do 

estimate ˆ s (τ ) and ˆ o (τ ) 

G π j 
← G π j 

+ G 

(
π j , τ

)

end for 

end for 

compute expectations ˆ π and ˆ γ
update policy beliefs P (π | s ) via Eq. 3 

assess a (t+1) from Q 

(
π | ̂ s (t) , ˆ π, ˆ γ

)

sample s (t+1) and o (t+1) 

end for 

end if 

.2. Pseudocode of Scheme 2 

for t from 1 to T do 

compute expectations about hidden states ˆ s (t) 

if max π E ˆ s (t) [ P (π | s )] > p th then 

π∗ = arg max E ˆ s (t) [ P (π | s )] 

get a (t+1) by means of π∗
determine s (t+1) and o (t+1) 

else 

for j from 1 to K do 

G π j 
← 0 

for τ from t to T do 

estimate ˆ s (τ ) and ˆ o (τ ) 

G π j 
← G π j 

+ G 

(
π j , τ

)

end for 

end for 

compute expectations ˆ π and ˆ γ
update policy beliefs P (π | s ) via Eq. (3) 

assess a (t+1) from Q 

(
π | ̂ s (t) , ˆ π, ˆ γ

)

sample s (t+1) and o (t+1) 

end if 

end for 

.3. Pseudocode of Scheme 3 

for t from 1 to T do 

compute expectations about hidden states ˆ s (t) 

for j from 1 to K do 

G π j 
← 0 

for τ from t to T do 

estimate ˆ s (τ ) and ˆ o (τ ) 

if E ˆ s (τ ) [ P (π j | s )] > p th then 

keep the G π j 
value computed so far 

else 

G π j 
← G π j 

+ G 

(
π j , τ

)

end if 

end for 

end for 

compute expectations ˆ π and ˆ γ
update policy beliefs P (π | s ) via Eq. (3) 

assess a (t+1) from Q 

(
π | ̂ s (t) , ˆ π, ˆ γ

)

sample s (t+1) and o (t+1) 
 mechanisms for habit formation in Active Inference, Neurocom- 
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