523 research outputs found

    Optimal Object Placement Policies To Minimize The Network-Wide Content Provisioning Cost

    Get PDF
    Social Wireless Networks are formed by mobile devices such as data enabled phones, electronic book readers etc., allocating common interests in electronic content and physically gathering together in public places. Electronic object caching in such social wireless networks (SWNETs)are capable to diminish the content provisioning cost which depends greatly on the service and pricing dependences amide range of stakeholders together with content providers (CP), network service providers and End Consumers (EC). Drawing inspiration from Amazon’s Kindle electronic book delivery business, this paper build up practical network, service and pricing models which are then used for creating two object caching approaches for diminishing content provisioning costs in networks with homogenous and assorted object demands. The paper creates logical and replication models for analyzing the proposed caching approaches   in the presence of selfish users that diverge from network-wide cost-optimal policies.

    Semantic Web Services Provisioning

    Get PDF
    Semantic Web Services constitute an important research area, where vari ous underlying frameworks, such as WSMO and OWL-S, define Semantic Web ontologies to describe Web services, so they can be automatically discovered, composed, and invoked. Service discovery has been traditionally interpreted as a functional filter in current Semantic Web Services frameworks, frequently performed by Description Logics reasoners. However, semantic provisioning has to be performed taking Quality-of-Service (QOS) into account, defining user preferences that enable QOS-aware Semantic Web Service selection. Nowadays, the research focus is actually on QOS-aware processes, so cur rent proposals are developing the field by providing QOS support to semantic provisioning, especially in selection processes. These processes lead to opti mization problems, where the best service among a set of services has to be selected, so Description Logics cannot be used in this context. Furthermore, user preferences has to be semantically defined so they can be used within selection processes. There are several proposals that extend Semantic Web Services frameworks allowing QOS-aware semantic provisioning. However, proposed selection techniques are very coupled with their proposed extensions, most of them being implemented ad hoc. Thus, there is a semantic gap between functional descriptions (usually using WSMO or OWL-S) and user preferences, which are specific for each proposal, using different ontologies or even non-semantic de scriptions, and depending on its corresponding ad hoc selection technique. In this report, we give an overview of most important Semantic Web Ser vices frameworks, showing a comparison between them. Then, a thorough analysis of state-of-the art proposals on QOS-aware semantic provisioning and user preferences descriptions is presented, discussing about their applicabil ity, advantages, and defects. Results from this analysis motivate our research work, which has been already materialized in two early contributions.Los servicios web semánticos constituyen un importante campo de inves tigación, en el cual distintos frameworks, como por ejemplo WSMO y OWL-S, definen ontologías de la web semántica para describir servicios web, de for ma que estos puedan ser descubiertos, compuestos e invocados de manera automática. El descubrimiento de servicios ha sido interpretado tradicional mente como un filtro funcional en los frameworks actuales de servicios web semánticos, usando para ello razonadores de lógica descriptiva. Sin embargo, las tareas de aprovisionamiento semántico deberían tener en cuenta la calidad del servicio, definiendo para ello preferencias de usuario de manera que sea posible realizar una selección de servicios web semánticos sensible a la cali dad. Actualmente, el foco de la investigación está en procesos sensibles a la ca lidad, por lo que las propuestas actuales están trabajando en este campo intro duciendo el soporte adecuado a la calidad del servicio dentro del aprovisio namiento semántico, y principalmente en las tareas de selección. Estas tareas desembocan en problemas de optimización, donde el mejor servicio de entre un concjunto debe ser seleccionado, por lo que las lógicas descriptivas no pue den ser usadas en este contexto. Además, las preferencias de usuario deben ser definidas semánticamente, de forma que puedan ser usadas en las tareas de selección. Existen bastantes propuestas que extienden los frameworks de servicios web semánticos para habilitar el aprovisionamiento sensible a la calidad. Sin embargo, las técnicas de selección propuestas están altamente acopladas con dichas extensiones, donde la mayoría de ellas implementan algoritmos ad hoc. Por tanto, existe un salto semántico entre las descripciones funcionales (nor malmente usando WSMO o OWL-S) y las preferencias de usuario, las cuales son definidas específicamente por cada propuesta, usando ontologías distin tas o incluso descripciones no semánticas que dependen de la correspondiente técnica de selección ad hoc

    A Public Option for the Core

    Get PDF
    This paper is focused not on the Internet architecture – as defined by layering, the narrow waist of IP, and other core design principles – but on the Internet infrastructure, as embodied in the technologies and organizations that provide Internet service. In this paper we discuss both the challenges and the opportunities that make this an auspicious time to revisit how we might best structure the Internet’s infrastructure. Currently, the tasks of transit-between-domains and last-mile-delivery are jointly handled by a set of ISPs who interconnect through BGP. In this paper we propose cleanly separating these two tasks. For transit, we propose the creation of a “public option” for the Internet’s core backbone. This public option core, which complements rather than replaces the backbones used by large-scale ISPs, would (i) run an open market for backbone bandwidth so it could leverage links offered by third-parties, and (ii) structure its terms-of-service to enforce network neutrality so as to encourage competition and reduce the advantage of large incumbents

    A framework to provide charging for third party composite services

    Get PDF
    Includes synopsis.Includes bibliographical references (leaves 81-87).Over the past few years the trend in the telecommunications industry has been geared towards offering new and innovative services to end users. A decade ago network operators were content with offering simple services such as voice and text messaging. However, they began to notice that these services were generating lower revenues even while the number of subscribers increased. This was a direct result of the market saturation and network operators were forced to rapidly deploy services with minimum capital investment and while maximising revenue from service usage by end users. Network operators can achieve this by exposing the network to external content and service providers. They would create interfaces that would allow these 3rd party service and content providers to offer their applications and services to users. Composing and bundling of these services will essentially create new services for the user and achieve rapid deployment of enhanced services. The concept of offering a wide range of services that are coordinated in such a way that they deliver a unique experience has sparked interest and numerous research on Service Delivery Platforms (SDP). SDP‟s will enable network operators to be able to develop and offer a wide-variety service set. Given this interest on SDP standardisation bodies such as International Telecommunications Union – Telecommunications (ITU-T), Telecoms and Internet converged Servicers and Protocols for Advanced Networks) (TISPAN), 3rd Generations Partnership Project (3GPP) and Open Mobile Alliance (OMA) are leading efforts into standardising functions and protocols to enhance service delivery by network operators. Obtaining revenue from these services requires effective accounting of service usage and requires mechanisms for billing and charging of these services. The IP Multimedia subsystem(IMS) is a Next Generation Network (NGN) architecture that provides a platform for which multimedia services can be developed and deployed by network operators. The IMS provides network operators, both fixed or mobile, with a control layer that allows them to offer services that will enable them to remain key role players within the industry. Achieving this in an environment where the network operator interacts directly with the 3rd party service providers may become complicated

    Building cloud applications for challenged networks

    Get PDF
    Cloud computing has seen vast advancements and uptake in many parts of the world. However, many of the design patterns and deployment models are not very suitable for locations with challenged networks such as countries with no nearby datacenters. This paper describes the problem and discusses the options available for such locations, focusing specifically on community clouds as a short-term solution. The paper highlights the impact of recent trends in the development of cloud applications and how changing these could better help deployment in challenged networks. The paper also outlines the consequent challenges in bridging different cloud deployments, also known as cross-cloud computing

    Multicloud Resource Allocation:Cooperation, Optimization and Sharing

    Get PDF
    Nowadays our daily life is not only powered by water, electricity, gas and telephony but by "cloud" as well. Big cloud vendors such as Amazon, Microsoft and Google have built large-scale centralized data centers to achieve economies of scale, on-demand resource provisioning, high resource availability and elasticity. However, those massive data centers also bring about many other problems, e.g., bandwidth bottlenecks, privacy, security, huge energy consumption, legal and physical vulnerabilities. One of the possible solutions for those problems is to employ multicloud architectures. In this thesis, our work provides research contributions to multicloud resource allocation from three perspectives of cooperation, optimization and data sharing. We address the following problems in the multicloud: how resource providers cooperate in a multicloud, how to reduce information leakage in a multicloud storage system and how to share the big data in a cost-effective way. More specifically, we make the following contributions: Cooperation in the decentralized cloud. We propose a decentralized cloud model in which a group of SDCs can cooperate with each other to improve performance. Moreover, we design a general strategy function for SDCs to evaluate the performance of cooperation based on different dimensions of resource sharing. Through extensive simulations using a realistic data center model, we show that the strategies based on reciprocity are more effective than other strategies, e.g., those using prediction based on historical data. Our results show that the reciprocity-based strategy can thrive in a heterogeneous environment with competing strategies. Multicloud optimization on information leakage. In this work, we firstly study an important information leakage problem caused by unplanned data distribution in multicloud storage services. Then, we present StoreSim, an information leakage aware storage system in multicloud. StoreSim aims to store syntactically similar data on the same cloud, thereby minimizing the user's information leakage across multiple clouds. We design an approximate algorithm to efficiently generate similarity-preserving signatures for data chunks based on MinHash and Bloom filter, and also design a function to compute the information leakage based on these signatures. Next, we present an effective storage plan generation algorithm based on clustering for distributing data chunks with minimal information leakage across multiple clouds. Finally, we evaluate our scheme using two real datasets from Wikipedia and GitHub. We show that our scheme can reduce the information leakage by up to 60% compared to unplanned placement. Furthermore, our analysis in terms of system attackability demonstrates that our scheme makes attacks on information much more complex. Smart data sharing. Moving large amounts of distributed data into the cloud or from one cloud to another can incur high costs in both time and bandwidth. The optimization on data sharing in the multicloud can be conducted from two different angles: inter-cloud scheduling and intra-cloud optimization. We first present CoShare, a P2P inspired decentralized cost effective sharing system for data replication to optimize network transfer among small data centers. Then we propose a data summarization method to reduce the total size of dataset, thereby reducing network transfer
    corecore