68,216 research outputs found

    Interpreting Adversarially Trained Convolutional Neural Networks

    Full text link
    We attempt to interpret how adversarially trained convolutional neural networks (AT-CNNs) recognize objects. We design systematic approaches to interpret AT-CNNs in both qualitative and quantitative ways and compare them with normally trained models. Surprisingly, we find that adversarial training alleviates the texture bias of standard CNNs when trained on object recognition tasks, and helps CNNs learn a more shape-biased representation. We validate our hypothesis from two aspects. First, we compare the salience maps of AT-CNNs and standard CNNs on clean images and images under different transformations. The comparison could visually show that the prediction of the two types of CNNs is sensitive to dramatically different types of features. Second, to achieve quantitative verification, we construct additional test datasets that destroy either textures or shapes, such as style-transferred version of clean data, saturated images and patch-shuffled ones, and then evaluate the classification accuracy of AT-CNNs and normal CNNs on these datasets. Our findings shed some light on why AT-CNNs are more robust than those normally trained ones and contribute to a better understanding of adversarial training over CNNs from an interpretation perspective.Comment: To apper in ICML1

    Sparsity Invariant CNNs

    Full text link
    In this paper, we consider convolutional neural networks operating on sparse inputs with an application to depth upsampling from sparse laser scan data. First, we show that traditional convolutional networks perform poorly when applied to sparse data even when the location of missing data is provided to the network. To overcome this problem, we propose a simple yet effective sparse convolution layer which explicitly considers the location of missing data during the convolution operation. We demonstrate the benefits of the proposed network architecture in synthetic and real experiments with respect to various baseline approaches. Compared to dense baselines, the proposed sparse convolution network generalizes well to novel datasets and is invariant to the level of sparsity in the data. For our evaluation, we derive a novel dataset from the KITTI benchmark, comprising 93k depth annotated RGB images. Our dataset allows for training and evaluating depth upsampling and depth prediction techniques in challenging real-world settings and will be made available upon publication

    A Novel Weight-Shared Multi-Stage CNN for Scale Robustness

    Get PDF
    Convolutional neural networks (CNNs) have demonstrated remarkable results in image classification for benchmark tasks and practical applications. The CNNs with deeper architectures have achieved even higher performance recently thanks to their robustness to the parallel shift of objects in images as well as their numerous parameters and the resulting high expression ability. However, CNNs have a limited robustness to other geometric transformations such as scaling and rotation. This limits the performance improvement of the deep CNNs, but there is no established solution. This study focuses on scale transformation and proposes a network architecture called the weight-shared multi-stage network (WSMS-Net), which consists of multiple stages of CNNs. The proposed WSMS-Net is easily combined with existing deep CNNs such as ResNet and DenseNet and enables them to acquire robustness to object scaling. Experimental results on the CIFAR-10, CIFAR-100, and ImageNet datasets demonstrate that existing deep CNNs combined with the proposed WSMS-Net achieve higher accuracies for image classification tasks with only a minor increase in the number of parameters and computation time.Comment: accepted version, 13 page
    • …
    corecore