
 Kobe University Repository : Kernel

タイトル
Tit le A Novel Weight-Shared Mult i-Stage CNN for Scale Robustness

著者
Author(s) Takahashi, Ryo / Matsubara, Takashi / Uehara, Kuniaki

掲載誌・巻号・ページ
Citat ion

IEEE Transact ions on Circuits and Systems for Video
Technology,29(4):1090-1101

刊行日
Issue date 2019-04

資源タイプ
Resource Type Journal Art icle / 学術雑誌論文

版区分
Resource Version author

権利
Rights

© 2019 IEEE. Personal use of this material is permit ted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprint ing/republishing this material for advert ising or
promot ional purposes, creat ing new collect ive works, for resale or
redistribut ion to servers or lists, or reuse of any copyrighted
component of this work in other works

DOI 10.1109/TCSVT.2018.2822773

JaLCDOI

URL http://www.lib.kobe-u.ac.jp/handle_kernel/90006380

PDF issue: 2019-11-05

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

A Novel Weight-Shared Multi-Stage CNN
for Scale Robustness

Ryo Takahashi, Takashi Matsubara, Member, IEEE, and Kuniaki Uehara,

Abstract—Convolutional neural networks (CNNs) have demon-
strated remarkable results in image classification for benchmark
tasks and practical applications. The CNNs with deeper archi-
tectures have achieved even higher performance recently thanks
to their robustness to the parallel shift of objects in images
as well as their numerous parameters and the resulting high
expression ability. However, CNNs have a limited robustness to
other geometric transformations such as scaling and rotation.
This limits the performance improvement of the deep CNNs,
but there is no established solution. This study focuses on scale
transformation and proposes a network architecture called the
weight-shared multi-stage network (WSMS-Net), which consists
of multiple stages of CNNs. The proposed WSMS-Net is easily
combined with existing deep CNNs such as ResNet and DenseNet
and enables them to acquire robustness to object scaling. Ex-
perimental results on the CIFAR-10, CIFAR-100, and ImageNet
datasets demonstrate that existing deep CNNs combined with
the proposed WSMS-Net achieve higher accuracies for image
classification tasks with only a minor increase in the number of
parameters and computation time.

Index Terms—Image Classification, Scale Transformation,
Multi-feature Fusion, Convolutional Neural Network, Shared
Weights

I. INTRODUCTION

Convolutional neural networks (CNNs) [1] have made sig-
nificant achievements in the tasks of image classification and
image processing [2], [3]. They have already been employed
for practical uses in various situations. CNNs are known to be
robust to small parallel shifts thanks to their architecture [1]:
Units in a CNN have local receptive fields, share weight
parameters with other units, and are sandwiched by pooling
layers. The performance of CNNs has been continuously
improved by the development of new network architectures.
A brief history of CNNs can be found in the results of
the ImageNet Large Scale Visual Recognition Competition
(ILSVRC) [4] (e.g., AlexNet [5] in 2012, VGG [6] and
GoogLeNet [7] in 2014 and ResNet [8] in 2015). Especially,
the ResNet family is attracting attention thanks to its new
shortcut connection that propagates the gradient through more
than 100 convolution layers to overcome the gradient vanish-
ing [9] and degradation [10]–[12] problem, which limited the
performance of deep neural networks.

In contrast, CNNs still have limited robustness to geometric
transformations other than parallel shifts, such as scaling and
rotation [13], and this problem has no established solution.
Scaled and rotated objects in images are recognized incorrectly

R. Takahashi, T. Matsubara, and K. Uehara are with Graduate
School of System Informatics, Kobe University, 1-1 Rokko-dai, Nada,
Kobe, Hyogo, 657-8501 Japan. E-mails: takahashi@ai.cs.kobe-u.ac.jp,
matsubara@phoenix.kobe-u.ac.jp, and uehara@kobe-u.ac.jp.

ordinary

scaled

Fig. 1. Examples of CIFAR-10 test images showing variability in scale.
The upper row images depict wide-shots and the lower row images depict
close-ups.

1st stage

resize

resize

Image A

Image B

 similar feature

2nd stage

1st stage

2nd stage

weight-shared

Integration
layer

Fig. 2. Conceptual explanation of multi-scale feature fusion in the proposed
weight-shared multi-stage network (WSMS-Net). Image A provides the local
features of an automobile such as the shapes of the tires, windows, headlights,
and license plate in the first stage. Similar features are detected in the resized
version of the image B, a part of a sports car, in the second stage thanks to
the shared weight parameters.

by CNNs or at least require additional parameters recognizing
the original objects, limiting the expression ability of CNNs.
Except for a few studies using special datasets [14], [15],
scaling has not been focused on in the classification task.
However, popular image classification benchmark datasets,
such as CIFAR [16] and ImageNet [4], contain many close-
ups and wide-shots, and thus, dealing with scaling of objects
is necessary in the classification task. Figure 1 shows close-
ups and wide-shots in the CIFAR-10 (lower row) as well as
other ordinary images (upper row). How the scaling is dealt
with is important for model’s performance. On the other hand,
in segmentation and object detection tasks, many previous

ar
X

iv
:1

70
2.

03
50

5v
3

 [
cs

.C
V

]
 1

2
A

pr
 2

01
9

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

works tackled scaling of objects using multi-scale feature
extraction [17]–[20]. This is because performance greatly
depends on the detection of the object region in an image
robustly to its scale. Unfortunately, the focuses of these works
were mainly on segmentation tasks, but not on classification
task. These works cannot be directly applied to classification
task. We demonstrate this issue in Section V-D and propose
a new network architecture robust to scaling of objects in
classification task in Section III-A.

In this paper, we propose a network architecture called the
weight-shared multi-stage network (WSMS-Net). In contrast
to ordinary CNNs, which are built by stacking convolution
layers, a WSMS-Net has a multi-stage architecture consisting
of multiple ordinary CNNs arranged in parallel. A conceptual
diagram of the WSMS-Net is depicted in Fig. 2. Each stage of
the WSMS-Net consists of all or part of the same CNN: The
weights of each convolution layer in each stage are shared
with those of the corresponding layers of the other stages.
Each stage is given a scaled image of the original input image.
The features extracted at all stages are concatenated and fed
to the integration layer. We expect that the integration layer
selects the feature for classification and discards the remaining
information. If the feature from one of the stages is sufficient
for classification, the integration layer selects it, and the other
stages require no further training. At the Fig. 2, in the case of
inputting image B after learning the image A, the integration
layer is expected to select the feature from stage 2 similar to
the feature learned from image A. Thanks to this architecture,
similar features are extracted even from objects of different
scales at the various stages, and thereby, the same objects of
different scales are classified into the same class. We apply
the WSMS-Net to existing deep CNNs and evaluate them on
the CIFAR-10, CIFAR-100 [16] and ImageNet [4] datasets.
The experimental results demonstrate that the WSMS-Nets
significantly make the original deep CNNs robust to scaling
and improve the classification accuracy. A preliminary and
limited result is found in a conference paper [21].

II. RELATED WORKS

A. Deep CNNs

CNNs have been introduced with shared weight parameters,
limited receptive fields, and pooling layers [1], inspired by the
biological architecture of the mammalian visual cortex [22],
[23]. Thanks to this architecture, CNNs can suppress increases
in the number of weight parameters and are robust to the
parallel shift of objects in images. In recent years, CNNs have
made remarkable improvements in image classification with
increasingly deeper architectures. In general, CNNs use the
back-propagation algorithm [1], which calculates the gradient
obtained at the output layer, back-propagates the gradient from
the output layer to the input layer, and updates the weight
parameters. However, when the network becomes very deep,
the gradient information from the output layer does not pass
well to the input layer and other layers near the input, and
learning does not progress.

B. State-of-the-Art Deep CNNs for Image Classification

To address the gradient vanishing [9] and degradation [10]–
[12] problem, ResNet [8] and DenseNet [24] were proposed
as network architectures that enable learning with even deep
architecture for image classification. We introduce these two
works because we use them as the basic works for our WSMS-
Net method. ResNet is the network that recorded the highest
accuracy in the ILSVRC image classification task in 2015.
Following ResNet, many ideas and new architectures have
been proposed [25]–[29], and in ILSVRC 2016, an extended
version of ResNet broke the record [26].

ResNet (Residual Network) [8] is a new architecture that
enables the CNNs to overcome the gradient vanishing and
degradation problem. The basic structure of ResNet is called
a residual block, which is composed of convolution layers
and a shortcut connection that does not pass through the
convolution layers: The shortcut connection simply performs
identity mapping. The result obtained from the usual convo-
lution layers is denoted by F (x), and the shortcut connection
output is denoted by x. The output obtained from the whole
block is F (x) + x. In deep CNNs, the gradient information
can vanish at the feature extraction point in the convolution
layer. However, by adding an identity mapping, the gradient
information can be transmitted without any risk of gradient
vanishing and degradation. The whole network of ResNet is
built by repeatedly stacking residual blocks. Residual block
needs no extra parameters, and the gradient can be calculated
in the same manner as conventional CNNs. ResNet employs
a residual block consisting of a shortcut and two convolution
layers of 3× 3 kernels for a fixed number of the channels. In
the original study [8], each layer is constructed using a conv-
BN-ReLU order. In a later study [25], a modified ResNet was
proposed with layers constructed using a BN-ReLU-conv order
that achieved a higher classification accuracy. BN indicates the
batch normalization [30] here. This modified ResNet is called
Pre-ResNet.

DenseNet (Densely Connected Convolutional Network) [24]
is a network that improves upon concept of ResNet [8]. Its
image classification accuracy is superior to that of ResNet.
As its name implies, the structure of DenseNet connects
layers densely: In contrast to ResNet, in which a shortcut
is connected across two convolution layers, a shortcut is
connected from one layer to all subsequent layers in DenseNet.
In addition, the output of the shortcut is not added to but is
concatenated with the output of a subsequent convolution layer
in the channel direction of the feature map. The number of
channels of the feature map increases linearly as the network
is deepened, and the number k of the increased channels
per layer is called the growth rate. The basic architecture
of DenseNet is called a dense block, and the whole network
of a DenseNet is built by stacking this dense blocks. The
original DenseNet consists of three dense blocks: The size
of the feature map in a single dense block is fixed, and the
shortcuts are not connected across each dense block.

Although the development of new network models such as
ResNet and DenseNet has overcome the gradient vanishing
and degradation problem, CNNs still do not have an estab-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

lished solution to geometric transformations such as scaling
and rotation. Lack of invariance to these transformations is an
obstacle to the progress of deep CNNs.

C. CNNs against Geometric Transformations

A few studies in classification task have tried to address
geometric transformations using neural networks [14], [15].
The Spatial Transformer Network (STN) and Deep Recurrent
Attentive Writer (DRAW) infer parameters such as position
and the angle of the geometric transformation of an object in
an image. They are general and powerful approaches to make
a network robust against geometric transformations. However,
the STN requires additional CNNs to localize and correct an
object in an image. DRAW requires repeated computations
between all-to-all pairs of pixels of the input and output
images to adjust parameters gradually for each image. They
require many additional parameters and computation time, and
thereby, not suitable for combining with deep CNNs. These
works can adapt to arbitrary scales if trained with images
of appropriate scales. They are not generalized to unknown
scales; they are not scale-invariant strictly. Other studies [31]–
[34] deal with the scale-invariance in the strict definition but
are unavailable with neural networks.

In contrast, many works focused on geometric transforma-
tions in segmentation and object detection tasks. Cai et al. [17]
aimed fast multi-scale object detection on the KITTI [35] and
Caltech [36] datasets, which contain a substantial number of
the small objects. This work proposed a unified multi-scale
deep CNN, which has multiple output layers so that their
receptive fields catch objects of different scales. Feature maps
of different sizes are acquired from different output layers
and used like an ensemble. Bargoti et al. [18] proposed a
network dealing with multiple input images. Input images of
different sizes are input into the network, and their features are
concatenated to a feature map in the next layer. This is called
multi-scale input patch. Audebert et al. [19] proposed a multi-
kernel convolution that operates at three multiple scales. An
image is given to three convolution layers with 3×3, 5×5, and
7×7 kernels in parallel, and their outputs are concatenated to
one feature map. Marmanis et al. [20] used a simple ensemble
of the outputs of a CNN given an image resized to multiple
scales. These works are also not strictly scale-invariant but are
robust to scaling.

III. WEIGHT-SHARED MULTI-STAGE NETWORK

A. Architecture of Weight-Shared Multi-Stage Network

In this study, we propose a novel network architecture called
weight-shared multi-stage network (WSMS-Net) for acquiring
robustness to object scaling. The basic architecture of WSMS-
Net is shown in Fig. 3. A WSMS-Net consists of S stages,
and each stage is either the entirety or part of an ordinary
CNN that can be divided into t convolution blocks for t ≥ S.
Each convolution block consists of some convolution layers.
After each convolution block, the feature map is resized to half
at a downsampling layer. Each conv block consists of some
convolution layers. We apply this WSMS-Net architecture to
existing deep CNNs; ResNet and DenseNet. A conv block

conv
block

weight-shared

+

input

concat

1st stage

downsampling

2nd stage

3rd stage

½½

½

½

½

1/n

Integration
layer

fully
connected

pooling
downsampling

Fig. 3. A basic WSMS-Net consisting of three stages. The input image is
resized to half and a quarter for the second stage and third stages, respectively.
Each conv block consists of some convolution layers. The weight-shared label
indicates that the weight parameters of all the convolution layers in the conv
blocks in multiple stages are completely shared with each other. After each
conv block, the feature map is resized to half at a downsampling layer, which
is typically an average pooling, a max pooling, or a convolution layer with a
stride of 2 but depends on the original CNNs. The output feature maps of all
the stages are concatenated in the channel direction at the circle indicated by
concat.

corresponds to a dense block of DenseNet and a sequence
of residual blocks of ResNet. A downsampling is performed
at a pooling or convolution layer with a stride of 2. Note
that, for WSMS-Net, we replaced a convolution layer with a
stride of 2 in ResNet with a convolution layer with a stride
of 1 followed by a pooling layer with a stride of 2 for a
robust result. The first stage consists of all t blocks while the
second stage has the first (t − 1) blocks, the third stage has
the first (t− 2) blocks, and so on. The convolution blocks at
the same depth of all the stages completely share the weight
parameters of the convolution layers. Note that when batch
normalization [30] is employed, its parameters are not shared.
The first stage is given the original image, while the second
stage is given the image resized by half by a downsampling
layer implemented as an average pooling layer. Note that an
average pooling with a kernel size of 2 and a stride of 2 is
equivalent to an interpolation for resizing an image to 1

2 . The
WSMS-Net only resizes an image to 1

2 and implements this
operation as an average pooling. Similarly, the s-th stage is
given the image resized to half of the size of the image given
to the (s−1)-th stage. Therefore, the sizes of the output feature
maps of all the stages are the same. These feature maps are
then concatenated in the channel direction at the ends of all
the stages. After concatenation, all of the feature maps are
integrated at the integration layer and are used as input to the
last fully connected layer for classification. Thanks to these
processes, various features are extracted from the input image
at multiple sizes in multiple stages and hence contribute to the
robustness to scaling.

B. Concepts of Weight-Shared Multi-Stage Network

We explain the detailed concept of a WSMS-Net in this
section. Consider images A and B, depicted in Fig. 2. There
are two stages: The first stage is given the original N × N

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

1st stage

3rd stage

2nd stage

data
augmentation

WSMS-Net

WSMS-Net

+

CNN

CNN

CNN

“car”

“car”

“car”

“car”

Fig. 4. Difference between data augmentation and WSMS-Net. With data
augmentation, CNN needs numerous parameters to learn the various features
from resized images. An input image is resized in WSMS-Net consisting of
several stages, and WSMS-Net learns at least one significant feature from the
input images of multiple sizes by weight sharing. Therefore, WSMS-Net does
not need extra parameters.

image as input and the second stage is given the N
2 × N

2 image
resized by half as input. Image A shows the entire automobile
and image B shows only the part around the left front tire of
a sports car. In the training phase, WSMS-Net is given the
image A and learns the features related to the automobile.
In the first stage, because the size of the image remains at
N ×N , WSMS-Net learns the local features of the car such
as the shapes of the tires, windows, headlights, and license
plate. In the second stage, because the image is resized to N

2 ,
WSMS-Net learns the features such as the whole shape of the
car but ignores the local features learned in the first stage.
Between the two stages, different features are found: This is
necessary for our WSMS-Net to become robust to scaling of
objects. We expect that a wide-shot and a close-up of similar
objects have similar features in the first and second stages.
With image A, WSMS-Net learns the feature maps in the red
shaded area see Fig. 2, in its first stage. After that, WSMS-Net
finds similar feature maps in the image B in the second stage.
Thanks to the different influences of receptive fields of two
stages, feature maps in the red shaded area in Fig. 2 in the
first stage learned by the image A are similar to those in the
second stage learned by the image B. If images A and B are
given to an ordinary CNN, the CNN cannot find any features
shared by them.

We emphasize that WSMS-Net is not the same as data
augmentation [37]. The difference between data augmentation
and WSMS-Net is depicted in Fig. 4. With data augmentation,
CNNs are always given a single image resized with various
scaling factors, and they try to classify it without other clues.
To classify an object consistently across different scales, a
CNN learns the same feature of different scales as different
features (e.g., features of the image A and image B in Fig. 2
are completely different). During the training procedure with

data augmentation method, the CNN learns features (e.g., a
front tire) from a scaled-up version of the image A and classify
the image B using that feature since they are similar to each
other after scaling (see the red areas). However, the CNN also
must learn other features from the image A of the default size,
from a scaled-up version of the image B, and a scaled-down
version of the image A. In short, the CNN has to learn a wide
variety of features using much more weight parameters. On
the contrary, WSMS-Net utilizes the same weight parameters
responding to similar features for classifying both the image
A and image B. The integration layer receives features of
multiple scales from multiple stages. If the feature from one of
the stages is sufficient for classification, the integration layer
selects it, and the other stages require no further training. As a
result, the variety of the features that WSMS-Net has to learn
is reduced. A WSMS-Net can be considered to share weight
parameters in the front-back direction of images in addition
to the ordinary CNNs sharing weight parameters only in the
vertical and horizontal directions.

IV. OPTIMIZATION OF WSMS-NET

A. Combination with Existing CNNs

The combining of ResNet, Pre-ResNet, and DenseNet with
the WSMS-Net(called WSMS-ResNet, WSMS-Pre-ResNet,
and WSMS-DenseNet respectively) should enable them to
classify the images that the original CNNs could not. The
number of stages and shape of the integration layer need to
be optimized to construct WSMS-ResNet, WSMS-Pre-ResNet,
and WSMS-DenseNet. The integration layer is an extra layer
placed just after the concatenation layer that integrates all the
feature maps before the classification. For comparison, we
also introduce a more trivial network called the multi-stage
network (MS-Net). An MS-Net has its own multiple stages like
a WSMS-Net, but each stage has weight parameters, similar
to an ensemble of multiple CNNs (e.g., [38]). MS-Net thus
has much more weight parameters than WSMS-Net but does
not have the aforementioned features of WSMS-Net.

B. Numbers of Stages

The number of stages is a fundamental factor of WSMS-
Net. Typical CNNs can be divided into several compartments
by pooling layers (e.g., an average pooling layer [1] or max
pooling layer [39]), which downsampled the feature maps:
ResNet and DenseNet employ a convolution layer followed
by an average pooling layer. Each compartment of ResNet
consists of several residual blocks and each compartment of
DenseNet consists of a single dense block. In this paper,
one compartment is treated as a single convolution block of
WSMS-Net. As a result, WSMS-ResNet, WSMS-Pre-ResNet,
and WSMS-DenseNet can have the stages as many as or less
than the compartments.

C. Integration Layer

We have not yet described the integration layer in detail.
The feature map obtained from stacked convolution layers is
often given to a global pooling layer and becomes a feature

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

1st stage

+
concat

fully
connected

no conv

+
concat

fully
connected

3x3 conv

+
concat

fully
connected

1x1 conv

3 x 3 conv

1 x 1 conv

2nd stage

3rd stage

1st stage

2nd stage

3rd stage

1st stage

2nd stage

3rd stage

1/n

1/n

1/n

pooling

Fig. 5. Three types of integration layers. With no conv, the concatenated
feature map is given directly to the global pooling layer followed by the last
fully connected layer. Moreover, 3 × 3 conv and 1 × 1 conv are 3 × 3 and
1 × 1 convolution layers, placed between the concatenated feature map and
the global pooling layer.

vector before the last fully connected layer, whose outputs
denote the inferred class labels. Owing to this concatenation,
the final number of channels of the feature map is larger than
that of the original network. To arrange the multiple features
from multiple stages in WSMS-Net, an integration layer needs
to select the most useful features. We explain this selection by
the integration layer in the case of WSMS-Net. For example,
an image depicts an S size object X and other image depicts
a 2S size object X . Given these two images, after the first to
third stages, the integration layer gets the concatenated feature
vectors (S, S/2, S/4) and (2S, S, S/2). Hence, these feature
vectors are not the same. However, the integration layer in
addition to the last fully connected layer forms the so-called
multilayer perceptron (mimicking an arbitrary function) and
is expected to select a salient feature from those extracted by
the multiple stages. Then, we expect the integration layer to
select the common feature (S, S/2) from the feature vectors.

We consider several candidates for an integration layer, as
shown in Fig. 5. In the simplest way, the integration layer
does nothing, and the last fully connected layer is given
a feature vector longer than that of the original network.
Then, the last fully connected layer linearly sums the feature
vector like an ensemble method, which is commonly used for
arranging multiple outputs from a network. This integration
layer is called no conv hereafter. On the contrary to no conv,
we can use a convolution layer as an integration layer. This
extra convolution layer, in addition to the last fully connected
layer, forms so-called multilayer perceptron (mimicking an
arbitrary function) and is expected to select a salient feature
from those extracted by the multiple stages. We evaluated
a 3 × 3 convolution layer as an integration layer because
both ResNet and DenseNet mainly employ 3× 3 convolution

layers. This integration layer is called 3 × 3 conv. We also
evaluated a 1 × 1 convolution layer, called 1 × 1 conv, as
an integration layer. 1 × 1 conv is the simplest convolution
layer, and suppresses an increase in the number of weight
parameters. In addition, 1× 1 conv integration layer does not
perform spatial convolution. Hence, 1 × 1 conv can evaluate
the necessity of spatial convolution for feature selection at the
integration layer.

V. EXPERIMENTS

A. Classification of CIFAR-10 and CIFAR-100 by WSMS-
DenseNet

WSMS-DenseNet on the CIFAR-10 and CIFAR-100:
In this section, we combined a DenseNet with a growth rate
k = 24 with WSMS-Net to construct a WSMS-DenseNet, and
evaluated the WSMS-DenseNet on the CIFAR-10 and CIFAR-
100 datasets [16]. CIFAR-10 and CIFAR-100 consist 32 ×
32 RGB images of natural scene objects; Each consists of
50,000 training images and 10,000 test images. Each image is
manually given one of 10 class labels in CIFAR-10, and 100
class labels in CIFAR-100 (The number of images per class is
thus reduced in CIFAR-100). DenseNet (k = 24) was reported
to be the model that achieved the second highest classification
accuracy among the results of the CIFAR-10 and CIFAR-100
datasets in the original study [24]. The original DenseNet (k =
24) has three dense blocks, and the sizes of the feature map are
32×32, 16×16, and 8×8 in the first, second, and third dense
blocks, respectively. There are 3 channels at the input, which is
increased to 16 by the convolution layer placed before the first
dense block, and the amount of channel is further increased
by the growth rate k = 24 at every convolution layer. Each
dense block consists of 32 convolution layers. Therefore, the
total number of channels is 16 + 24× 32× 3 = 2, 320. After
the third dense block, global pooling is performed, resulting
in a 2,320-dimensional feature vector then given to the last
fully connected layer for classification.

We constructed WSMS-DenseNet with a growth rate of k =
24 by combining the DenseNet with WSMS-Net. Each dense
block of the DenseNet was treated as a convolution block of
the WSMS-Net and we set the number of stages to two patterns
of two and three. The final numbers of channels for the first,
second, and third stages were 16 + 24 × 32 × 3 = 2, 320,
16 + 24 × 32 × 2 = 1, 552, and 16 + 24 × 32 × 1 = 784,
respectively. Hence, the integration layer was given a feature
map of 2, 320 + 1, 552 + 784 = 4, 656 channels. With the
no conv integration layer, the feature maps became a 4,656-
dimensional feature vector through the global pooling layer.
We set c, the number of the channels of the final feature map,
to 128: The feature map was projected to 8×8 feature maps of
128 channels through the 3×3 conv or 1×1 conv integration
layer before the global pooling layer. The hyperparameters
and other structural parameters for WSMS-DenseNet followed
those of the original DenseNet (k = 24). All the images
were normalized with the mean and variance of each filter,
and a 4-pixel padding on each side, 32 × 32 cropping, and
random flipping in the horizontal direction were employed
as further data normalization and data augmentation [37],

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE I
TEST ERROR RATES OF THE WSMS-DENSENET AND ORIGINAL DENSENET ON THE CIFAR-10 AND CIFAR-100 DATASETS.

C10+ C100+

Network growth rate k #params Error (%) #params Error (%)

DenseNet 24 27.2M 3.74∗ 27.2M 19.25∗

DenseNet 26 31.9M 3.82 31.9M 18.94
MS-DenseNet (3 stages, 1× 1 conv) (not weight-shared for comparison) 24 41.3M 4.18 41.3M 18.70

WSMS-DenseNet (2 stages, no conv) 24 27.4M 3.98 27.7M 19.68
WSMS-DenseNet (2 stages, 3× 3 conv) 24 31.8M 3.54 31.8M 18.75
WSMS-DenseNet (2 stages, 1× 1 conv) 24 27.8M 3.58 27.8M 19.28

WSMS-DenseNet (3 stages, no conv) 24 27.4M 4.54 27.8M 20.11
WSMS-DenseNet (3 stages, 3× 3 conv) 24 32.7M 3.54 32.7M 19.16
WSMS-DenseNet (3 stages, 1× 1 conv) 24 28.0M 3.51 28.0M 18.45

∗ indicates the result cited from original study [24].

[40], [41]. Batch normalization [30] and the ReLU activa-
tion function [42] were used. The weight parameters were
initialized following the algorithm proposed in [43]. WSMS-
DenseNet was trained using the momentum SGD algorithm
with a momentum parameter of 0.9 and weight decay of
10−4 over 300 epochs. The learning rate was initialized to
0.1, and then, it was reduced to 0.01 and 0.001 at the 150th
and the 225th epochs respectively. Note that, the mini-batch
size was changed from 64 to 32 owing to the capacity of the
computer we used; This change has could potentially degrade
the classification accuracy of WSMS-DenseNet.

Classification Results: Table I summarizes the results
of the WSMS-DenseNet (k = 24) and original DenseNet.
We focus on the results of WSMS-DenseNet with 3 stages
first. For CIFAR-10, the error rate of our proposed WSMS-
DenseNet with 1 × 1 conv integration layer is 3.51 %,
which is better than the error rate of 3.74 % obtained by
the original DenseNet (k = 24). However, the number of
parameters of the WSMS-DenseNet increased from 27.2M
to 28.0M. For fair comparison, we also evaluated DenseNet
(k = 26). Despite the increase in the number of parameters,
DenseNet (k = 26) achieved a worse error rate of 3.82 %.
These results demonstrate that an increase in the number of
parameters has a limit in the improvement of classification
accuracy. In contrast, our proposed WSMS-Net enables the
original DenseNet to achieve a better classification accuracy
with only a minor increase in number of parameters. With
WSMS-DenseNet, 1×1 conv and 3×3 conv integration layers
achieved better results but no conv got worse results compared
with the original DenseNet. Recall that 1× 1 conv and 3× 3
conv can build a non-linear function, but no conv works just
like an ensemble of features. This difference demonstrates
the importance of feature selection by the integration layer.
Between the two convolution methods of the integration layer,
1× 1 conv achieved better results than 3× 3 conv. This result
demonstrates that spatial convolution is unnecessary to select
feature and 3 × 3 conv could be redundant in this respect.
Therefore, 1 × 1 conv is sufficient as the integration layer.

The MS-DenseNet achieved an error rate worse than those
of the original DenseNet and WSMS-DenseNet despite the
massive increase in the number of parameters, indicating that
the improvement of WSMS-DenseNet is thanks to the shared
parameters rather than the network architecture. Even though
the WSMS-DenseNet has a smaller increase in the number of
parameters than the MS-Densenet thanks to the shared weight
parameters, both the WSMS-DenseNet and MS-DenseNet
have an equal increase in the number of calculations owing
to the second and third stages. Therefore, we calculated the
number of multiplications over all the convolution layers in
the original DenseNet and WSMS-DenseNet. The number of
multiplications is about 6,889M for the original 100-layer
DenseNet and 8,454M for the 101-layer WSMS-DenseNet
with a 1 × 1 conv integration layer: Our proposed WSMS-
DenseNet incurs only a 20 % increase in the number of
multiplications. The second stage requires less than 25 % of
the computations of the first stage because the input image
is half the size. In addition, for CIFAR-100, our proposed
WSMS-DenseNet with the 1 × 1 conv integration layer
achieved the lowest error rate of 18.45 %. DenseNet (k = 26)
and the MS-DenseNet also achieved accuracies better than
that of the original DenseNet (k = 24) but worse than that
of the WSMS-DenseNet. Next, we focus on the results of
WSMS-DenseNet with 2 stages. In the case of 1×1 conv and
3× 3 conv, WSMS-DenseNet with 2 stages on the CIFAR-10
achieved an accuracy worse than that with 3 stages but
better than the original DenseNet. Decreasing the number of
stages results in the lower robustness to scaling and accuracy
improvement. In the case of no conv, WSMS-DenseNet
with 2 stages achieved an accuracy worse than the original
but better than WSMS-DenseNet with 3 stages. Without
the feature selection by the extra convolution layer, a large
number of stages is harmful to the classification accuracy.

For CIFAR-100, the results show a similar tendency to
the case of the CIFAR-10. WSMS-DenseNet with 2 stages
achieved a better accuracy than the original DenseNet only
in the case of 3 × 3 conv. We suppose that this is due to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 6. Examples of CIFAR-10 test images misclassified by the DenseNet
(k = 24) and the DenseNet (k = 26) but classified by the WSMS-DenseNet
(k = 24, 1× 1 conv) correctly.

Fig. 7. Examples of CIFAR-10 test images.

the complexity of the CIFAR-100. Since the CIFAR-100
consists of a larger number of classes thus limited number
of samples per class, WSMS-Net has a much smaller chance
of finding similar features in different stages from the
CIFAR-100 images than from the CIFAR-10 images. Hence,
WSMS-Net requires more stages to learn similar features in
different stages. In the case of 3 × 3 conv, WSMS-DenseNet
achieved a better accuracy simply thanks to the larger number
of weight parameters like deeper DenseNet and MS-DenseNet.

Misclassified Images: In this section, we qualitatively
evaluate our proposed WSMS-Net. We collected test images
from CIFAR-10 that DenseNet (k = 24) and DenseNet (k =
26) misclassified but WSMS-DenseNet (k = 24) classified
correctly in Fig. 6. Many of them are close-ups and wide-
shots. We also collected CIFAR-10 test images randomly in
Fig. 7, only a few of which are close-ups and wide-shots.

This difference demonstrates that WSMS-DenseNet (k = 24)
is more robust to scaling than the original DenseNet (k = 24)
and DenseNet (k = 26). As a conclusion, the WSMS-Net has
become robust to object scaling, and therefore, it achieves a
better classification accuracy than the original CNNs with only
a limited increase in the number of weight parameters.

Visualization of Feature Selection by the Integration
Layer: In Section IV-C, we expected the integration layer to
select the common feature (like red shaded areas in Fig. 2)
from the feature vectors obtained from multi-stages. Here, we
evaluate the feature selection. We chose 50 horse images from
CIFAR-10 test images and fed them to the trained WSMS-
DenseNet (k = 24). 25 out of 50 images are close-ups of horse
heads and the remaining are wide-shots of horses as shown in
Figs. 8 (a) and (b). We obtained their feature maps before and
after the integration layer. We performed 8×8 average pooling
to these feature maps, resulting in 4, 656 and 128-dimensional
feature vectors. We performed t-SNE dimension reduction [44]
to visualize these feature vectors in a 2-dimensional space.
Fig. 8 (c) shows that the feature vector before the integration
layer forms two clusters depending on scales; Fig. 8 (d) shows
that the feature vector after the integration layer forms just one
cluster. This difference demonstrates that the integration layer
selects features independent from the scale.

B. Classification of CIFAR-10 and CIFAR-100 by WSMS-Pre-
ResNet

WSMS-Pre-ResNet on the CIFAR-10 and CIFAR-100:
This section evaluates the WSMS-Pre-ResNet on the CIFAR-
10 and CIFAR-100 datasets [16]. The 1001-layer Pre-ResNet
was reported to be the model achieving the highest accuracy
for CIFAR-10 when [25] was published. In contrast to a
regular ResNet, the 1001-layer Pre-ResNet has a bottleneck
architecture. The 1001-layer Pre-ResNet has three compart-
ments. To downsample the feature map at the entrance of
the second and third compartments, the 1001-layer Pre-ResNet
sets the stride of the first of the three sequential convolution
layers to 2. The sizes of the feature maps are 32 × 32,
16×16, and 8×8 in the first, second, and third compartments,
respectively. The number of channels of the feature map is 3
at the input and is increased to 64 by the convolution layers
before the first compartment. After that, the feature map size
is increased to 128, then 256, by the first convolution layers
of the second and third compartments, respectively. After the
third compartment, global pooling is performed on the 8 × 8
feature map of 256 channels, resulting in a 1× 1 feature map
of 256 channels, i.e., a 256-dimensional feature vector. This
feature vector is given to the final fully connected layer for
classification.

We constructed the WSMS-Pre-ResNet by combining the
1001-layer Pre-ResNet with WSMS-Net. We constructed ver-
sions of WSMS-Pre-ResNet with 2 and 3 stages so that each
compartment of the 1001-layer Pre-ResNet corresponds to a
convolution block of WSMS-Net. A 32 × 32 input image
was downsampled to 16 × 16 for the second stage and was
downsampled to 8× 8 for the third stage by a 2× 2 average
pooling layers. The first stage was the same as the original

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

(a) (b)

(c) (d)

Fig. 8. A 2-dimensional visualization of the feature maps in the WSMS-DenseNet (k = 24) before and after the integration layer. We input two types
of scaled horse images from CIFAR-10 test images; (a) close-ups of horse heads and (b) wide-shots of horses. We used 8 × 8 average pooling and the
t-SNE dimension reduction [44] to obtain 2-dimensional features for visualization. (c) A visualization of feature maps of before the integration layer. (d) A
visualization of feature maps of after the integration layer.

1001-layer Pre-ResNet before the global pooling layer. The
second stage was composed of the first two compartments,
in which the size of the feature map was 16 × 16 in the
first convolution block and 8 × 8 in the second convolution
block. In addition, the third stage was composed of the first
compartment of the original 1001-layer Pre-ResNet using the
8 × 8 feature map. The integration layer was given a feature
map of 256+128+64 = 448 channels. We set c, the number of
channels of the final feature map to 128, as is the case with the
WSMS-DenseNet. The hyperparameters and other structural
parameters of the WSMS-Pre-ResNet followed those used for
the 1001-layer Pre-ResNet in the original study [25]. Data
normalization and data augmentation were performed in the
same way as for the WSMS-DenseNet experiments. Batch nor-
malization [30] and ReLU activation function [42] were used.
The weight parameters were initialized following the algorithm

proposed in [43]. The WSMS-Pre-ResNet was trained using
the momentum SGD algorithm with a momentum parameter of
0.9, mini-batch size of 64, and weight decay of 10−4 over 200
epochs. The learning rate was initialized to 0.1, and then, it
was changed to 0.01, and 0.001 at the 82nd and 123rd epochs,
respectively.

Classification Results: Table II summarizes the results
of the WSMS-Pre-ResNet and original Rre-ResNet. Following
the original study [25], we obtained the mean test error rate
of five trials. We focus on the results of WSMS-Pre-ResNet
with 3 stages at first. For CIFAR-10, the error rate of our
proposed WSMS-Pre-ResNet with the 1× 1 conv integration
layer is 3.94 %: This accuracy is clearly superior to the error
rate of 4.62 % obtained from the original Pre-ResNet. We
also evaluated a 1,019-layer Pre-ResNet for fair comparison
and confirmed that it achieved the accuracies at the same level

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE II
TEST ERROR RATES OF THE WSMS-PRE-RESNET AND PRE-RESNET ON CIFAR-10/CIFAR-100.

C10+ C100+

Network depth #params Error(%) #params Error(%)

Pre-ResNet 1001 10.2M 4.62∗ 10.2M 22.71†

Pre-ResNet 1019 10.5M 4.62 10.5M 21.70
MS-Pre-ResNet (3 stages, 1× 1 conv) (not weight-shared for comparison) 1001 13.3M 4.01 13.3M 20.09

WSMS-Pre-ResNet (2 stages, no conv) 1002 10.4M 4.08 10.4M 20.28
WSMS-Pre-ResNet (2 stages, 3× 3 conv) 1002 10.8M 4.07 10.8M 20.45
WSMS-Pre-ResNet (2 stages, 1× 1 conv) 1002 10.4M 3.97 10.4M 20.32

WSMS-Pre-ResNet (3 stages, no conv) 1002 10.4M 4.05 10.4M 19.83
WSMS-Pre-ResNet (3 stages, 3× 3 conv) 1002 10.9M 3.95 10.9M 20.39
WSMS-Pre-ResNet (3 stages, 1× 1 conv) 1002 10.4M 3.94 10.4M 20.49

∗ indicates the result cited from original study [25] and † indicates the result from our experiments.

as the 1,001-layer Pre-ResNet despite a large increase in the
number of weight parameters. The MS-Pre-ResNet achieved
an error rate better than the original Pre-ResNet but worse
than the WSMS-Pre-ResNet despite the massive increase in the
number of parameters. The number of multiplications required
by the original 1,001-layer Pre-ResNet is about 4,246M and
that by the 1,002-layer WSMS-Pre-ResNet with 1 × 1 conv
integration layer is about 5,045M: Our proposed WSMS-
Pre-ResNet incurs only a 20 % increase in the number of
multiplications.

In the case of CIFAR-100, the performance of WSMS-
Pre-ResNet with 1 × 1 conv integration layer also surpassed
that of the original Pre-ResNet. Unlike the case of CIFAR-
10, the 1,019-layer Pre-ResNet and MS-Pre-ResNet achieved
better results than the original Pre-ResNet. We consider that
the difference between CIFAR-10 and CIFAR-100 is caused
by the complexity of the classification task. Classification in
CIFAR-100 is more difficult because of the larger number of
classes and limited numbers of samples, and thus, requires
much more weight parameters than classification in CIFAR-
10. Therefore, the 1,002-layer WSMS-Pre-ResNet and MS-
Pre-ResNet, which have more weight parameters, are simply
more advantageous than the original Pre-ResNet. The original
DenseNet already has enough parameters for classification
of CIFAR-10 and CIFAR-100, but the original 1,001-layer
Pre-ResNet does not have enough parameters for CIFAR-100
over 27.2M compared to 10.2M. With WSMS-Pre-ResNet, all
of 1 × 1 conv, 3 × 3 conv integration layer and no conv
achieved better results than the original Pre-ResNet. 1 × 1
conv achieved the highest accuracy on the CIFAR-10 as is the
case with DenseNet. However, no conv achieved the highest
accuracy on the CIFAR-100. We consider that this is due to
the small number of channels of feature map: Pre-ResNet
has only 256 + 128 + 64 = 448 channels compared to the
2, 320+1, 552+784 = 4, 656 channels in DenseNet. Because
of this, the integration layer does not need to select the useful
features, and the better accuracy is recorded by inputting all
features to the last fully connected layer. Especially in the

case of CIFAR-100, due to its complexity of the classifica-
tion, WSMS-Pre-ResNet needed the all channels of feature
map to acquire as many clues as possible for classification.
WSMS-Pre-ResNet with 2 stages achieved an accuracy almost
comparable to but slightly worse than the one with 3 stages
in almost all the cases. As expected, the reduced number of
stages resulted in a worse accuracy because of the limited
robustness to scaling.

Nonetheless, our proposed WSMS-Net with 1 × 1 conv
enables the original Pre-ResNet to achieve better classification
accuracy with only limited increase in the number of param-
eters, even for CIFAR-100.

C. Comparison of WSMS-Net and image scaling data aug-
mentation

In this section, we compare the performance of our WSMS-
Net and the original networks with data augmentation which
resizes the input image. This is called the image scaling
data augmentation, hereafter. We used the DenseNet and
Pre-ResNet as the original networks of our WSMS-Net and
the image scaling data augmentation. We evaluated WSMS-
DenseNet, WSMS-Pre-ResNet, DenseNet with image scaling
data augmentation, and Pre-ResNet with image scaling data
augmentation on the CIFAR-10 and CIFAR-100 datasets.

The Image Scaling Data Augmentation: For DenseNet
and Pre-ResNet with the image scaling data augmentation,
we prepared 16 × 16 and 8 × 8 images resized from the
original 32×32 images additionally. The sizes of images were
randomly determined in every training iteration. In the test
phase, we evaluated the networks using the following images.

1) images of the original size as usual.
2) images of the original, 1

2 , and 1
4 size with an ensemble.

The ensemble method followed Marmanis et al. [20], which
used an ensemble of multiple outputs corresponding to an
input image of multiple scales. The hyperparameters and other
conditions were the same as those used in the original studies
of Pre-ResNet and DenseNet.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE III
TEST ERROR RATES OF THE DENSENET AND PRE-RESNET WITH IMAGE SCALING DATA AUGMENTATION, MULTI-SCALE DENSENET AND MULTI-SCALE

PRE-RESNET ON THE CIFAR-10/CIFAR-100.

Network CIFAR-10 Error(%) CIFAR-100 Error(%)

DenseNet 3.74∗ 19.25†

DenseNet (data augmentation, only 32× 32 test data) 11.87 46.03
DenseNet (data augmentation, ensemble of sizes of 8, 16 and 32) [20] 6.21 28.73
multi-scale DenseNet [17] 5.04 23.55
WSMS-DenseNet (3 stages, 1× 1 conv) 3.51 18.45

Pre-ResNet 4.62∗ 22.71∗

Pre-ResNet (data augmentation, only 32× 32 test data) 13.61 52.86
Pre-ResNet (data augmentation, ensemble of sizes of 8, 16 and 32) [20] 9.23 35.47
multi-scale Pre-ResNet [17] 5.38 21.87
WSMS-Pre-RseNet (3 stages, 1× 1 conv) 3.94 20.49
∗ indicates the result cited from original studies [24], [25] and † indicates the result from our experiments.

Classification Results: Table III shows the results of
the DenseNet and Pre-ResNet with the image scaling data
augmentation as well as the WSMS-Net. The DenseNet and
Pre-ResNet with the image scaling data augmentation achieved
the worse accuracies. The ensemble improved the accuracies,
but they were still worse than the originals. These results
indicate that the DenseNet and Pre-ResNet tried to learn the
multiple features from an input of multiple scales, but they do
not have enough capacity (i.e., weight parameters) to do that
straight-forwardly as mentioned in Section III-B. We conclude
that out WSMS-Net is different than and superior to the image
scaling data augmentation.

D. Comparison with Existing CNNs using Multi-scale Feature
Fusion

Multi-Scale CNN for image classification: In this sec-
tion, we compare our WSMS-Net with a previous work
focusing on dealing with scaling, the multi-scale CNN [17],
mentioned in Section II. The multi-scale CNN focuses on
object detection task originally but it is a multi-scale feature
fusion method for the robustness to scaling like WSMS-Net.
Multi-scale CNN has multiple output layers (one from the
last layer and the others from intermediate layers just before
downsampling layers) so that their receptive fields correspond
to objects of different scales. In other words, multi-scale
CNN uses intermediate feature maps like the second and
following stages of WSMS-Net. For the comparison with our
WSMS-Net, we applied the architecture of multi-scale CNN to
the DenseNet and Pre-ResNet and evaluated the performance
of classification on the CIFAR-10 and CIFAR-100. We call
DenseNet and Pre-ResNet with multi-scale CNN as the “multi-
scale DenseNet” and “multi-scale Pre-ResNet”, respectively.
The original DenseNet and Pre-ResNet have three conv blocks,
and hence, we added additional output layers to the last layers
of the first and second conv blocks. Following the original
multi-scale CNN, the total loss function was the sum of the
loss functions of the three output layers. The hyperparameters
and other conditions were the same as those used in the
original studies of Pre-ResNet, DenseNet, and multi-scale
CNN.

Classification Results: Table III shows the results of
the multi-scale DenseNet and multi-scale Pre-ResNet. Both of
them resulted the worse accuracies except for the multi-scale
Pre-ResNet on CIFAR-100. These results indicate that the
multi-scale CNN either does not cooperate with general deep
CNNs like DenseNet and Pre-ResNet, does not work well for
the classification task, or at least requires a special adjustment
of hyperparameters. According to these results and the results
in Section V-C, we conclude that only one of resizing input
and taking multiple intermediate features does not work well.
Our WSMS-Net improved classification accuracy by resizing
input, taking multiple intermediate features, and then, selecting
features at the integration layer.

E. ImageNet classification by WSMS-ResNet

WSMS-ResNet on the ImageNet: This section evaluates
ResNet [8] with WSMS-Net for the ImageNet 2012 classifi-
cation dataset [4]. ImageNet consists of 1.28 million training
images and 50,000 validation images. Each image is given one
of 1,000 class labels. We used 50-layer, 101-layer and 152-
layer ResNets with the bottleneck architecture as the base to
construct our WSMS-Nets. To downsample the feature map at
the entrance of each compartment, a ResNet with bottleneck
architecture modifies the stride of the second of the three
sequential convolution layers to 2, and replaces the shortcut
with a 1 × 1 convolution layer with a stride of 2, while the
original ResNet employs pooling layers.

The ResNet is given an N×M RGB input image. The input
image becomes an N

4 ×M
4 feature map of 64 channels through

a 7 × 7 convolution layer with a stride of 2 and a following
3×3 max pooling layer with a stride of 2. The remaining part
of ResNet has four compartments, each consisting of several
residual blocks with bottleneck architecture. The size of the
feature maps are N

4 × M
4 , N

8 × M
8 , N

16 × M
16 , and N

32 × M
32 ,

and the number of channels of the feature maps are 256,
512, 1,024, and 2,048 for the first, second, third, and fourth
compartments, respectively. After the fourth compartment,
global pooling is performed, resulting in a 1×1 feature map of
2,048 channels. This feature vector is given to the final fully

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE IV
SINGLE CROP TEST ERROR RATES OF WSMS-RESNETS AND ORIGINAL RESNETS ON IMAGENET DATASET.

Network depth #params top-1 Error(%) top-5 Error(%)

ResNet 50 25.6M 24.01 7.02
WSMS-ResNet (3 stages, 1× 1 conv) 51 28.3M 23.07 6.44
WSMS-ResNet (4 stages, 1× 1 conv) 51 28.5M 23.13 6.57

ResNet 101 44.5M 22.44 6.21
WSMS-ResNet (3 stages, 1× 1 conv) 102 47.3M 22.20 6.22
WSMS-ResNet (4 stages, 1× 1 conv) 102 47.6M 22.09 6.06

ResNet 152 60.2M 22.16 6.16
WSMS-ResNet (3 stages, 1× 1 conv) 153 63.0M 21.99 6.04
WSMS-ResNet (4 stages, 1× 1 conv) 153 63.3M 21.93 5.90

We omitted the experiments of the WSMS-ResNet with 2 stages because of the worse results of the
WSMS-Pre-ResNet and WSMS-DenseNet with 2 stages than with 3 stages on the CIFAR dataset.
(see Tables I and II)

connected layer for 1,000-class classification. The numbers of
residual blocks are 3, 4, 6, and 3 in the first, second, third,
and forth compartments of the 50-layer ResNet, 3, 4, 23, and
3 in the 101-layer ResNet, and 3, 8, 36, and 3 in the 152-layer
ResNet, respectively.

We constructed the WSMS-ResNets by combining the 50-
layer, 101-layer, and 152-layer ResNets [8] for ImageNet
dataset with WSMS-Net. The number of stages was set to three
and four. In the case of ImageNet experiment, the original
ResNet has four compartments, and we can set the number
of stages to two, three, or four. We omitted the experiment
of WSMS-ResNet with 2 stages because of the worse results
of WSMS-Pre-ResNet and WSMS-DenseNet with 2 stages
than with 3 stages on the CIFAR-10 and CIFAR-100 shown
in Tables I and II. The first stage was just the same as the
original ResNet before the global pooling layer. An N × M
input image was downsampled to N

2 × M
2 for the second stage

and N
4 ×

M
4 for the third stage. The second stage was composed

of the first three compartments of the original ResNet, in
which the size of the feature map was N

8 × M
8 , N

16 × M
16 ,

and N
32 ×

M
32 in the first, second, and third blocks, respectively.

In addition, the third stage was composed of the first two
compartments, using N

16 × M
16 and N

32 × M
32 feature maps.

The integration layer was given a N
32 × M

32 feature map of
2, 048 + 1, 024 + 512 = 3, 584 channels. We set c = 1, 024.
We evaluated our WSMS-ResNets only with the 1 × 1 conv
integration layer because of the results in the previous sections.

The hyperparameters and other conditions of WSMS-
ResNets followed those used in the original study [8] and
the reimplementation by Facebook AI Research posted on
https://github.com/facebook/fb.resnet.torch. Batch normaliza-
tion [30] and a ReLU activation function [42] were used. The
weight parameters were initialized following the algorithm
proposed in [43]. The WSMS-ResNets were trained using
the momentum SGD algorithm with a momentum parameter
of 0.9, mini-batch size of 256, and weight decay of 10−4 over
90 epochs. The learning rate was initialized to 0.1, and then,
it was reduced to 0.01 and 0.001 at the 30th and 60th epochs,
respectively.

Classification Results: Table IV summarizes the results
of the WSMS-ResNets and original ResNets for ImageNet
classification. The classification results of the original ResNets
were cited not from the original study [8] but the reimple-
mentation by Facebook AI Research posted on https://github.
com/facebook/fb.resnet.torch. Note that Facebook’s results are
better than those shown in the original study [8].

We first focus on the results of WSMS-ResNet with 4 stages.
According to Table IV, our proposed 51-layer, 102-layer, and
153-layer WSMS-ResNets achieved better results than their
original counterparts, in both top-1 and top-5 error rates. While
the WSMS-ResNets for ImageNet classification have more
parameters than the original ResNets, the 102-layer WSMS-
ResNet with 4 stages having 47.6M parameters is superior
to the original 152-layer ResNet having 60.2M parameters.
This is evidence that our proposed WSMS-Net improves the
original CNN while maintaining a limited increase in the
number of weight parameters. WSMS-ResNet with 3 stages
achieved accuracies worse than the one with 4 stages but better
than the original ResNet, except for the 102-layer WSMS-
ResNet, top-5 error rate. This indicates that WSMS-Nets work
better with even more stages.

All the results for the CIFAR-10, CIFAR-100, and ImageNet
classification tasks demonstrate that a combination with our
proposed WSMS-Net contributes to the various datasets and
architectures of CNNs.

VI. CONCLUSION

In this study, we proposed a novel network architecture
for convolutional neural networks (CNNs) called the weight-
shared multi-stage network (WSMS-Net) to improve classi-
fication accuracy by acquiring robustness to object scaling.
The WSMS-Net consists of multiple stages of CNNs, each
given input image of different sizes. Feature maps obtained
from all the stages are concatenated and integrated at the
ends of the stages. The increases in the number of weight
parameters and computations were limited. The experimen-
tal results demonstrated that the WSMS-Net achieved better
classification accuracy and had the higher robustness to object

https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

scaling than existing CNN models while deepening the net-
work is a less parameter-efficient way to improve classification
accuracy. Future works include a more detailed evaluation
of the robustness to object scaling, evaluation on additional
datasets, and evaluation with other CNN architectures.

ACKNOWLEDGMENT

This study was partially supported by the MIC/SCOPE
#172107101.

REFERENCES

[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation Applied to Handwritten
Zip Code Recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[2] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolu-
tional Networks,” in Proc. of European Conference on Computer Vision
(ECCV2014), 2014, pp. 818–833.

[3] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“OverFeat: Integrated Recognition, Localization and Detection using
Convolutional Networks,” in Proc. of International Conference on
Learning Representations (ICLR2014), 2014, pp. 1–16.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, and C. V. Jan, “ImageNet Large Scale Visual
Recognition Challenge,” arXiv, pp. 1–43, 2014.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems (NIPS2012). Curran Associates, Inc.,
2012, pp. 1097–1105.

[6] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” in Proc. of International Conference
on Learning Representations (ICLR2015), 2015, pp. 1–14.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR2015), vol. 07-12-June, 2015, pp. 1–9.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” Proc. of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR2016), pp. 770–
778, 2016.

[9] A. Veit, “Residual Networks Behave Like Ensembles of Relatively
Shallow Networks,” in Advances in Neural Information Processing
Systems 29 (NIPS2016), 2016, pp. 550–558.

[10] J. Schmidhuber, “Deep Learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[11] Y. Bengio, “Learning long-term dependencies with gradient descent is
difficult,” IEEE transactions on neural networks 5(2), pp. 157–166,
1994.

[12] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proc. of the 13th International
Conference on Artificial Intelligence and Statistics (AISTATS), vol. 9,
2010, pp. 249–256.

[13] Q. Le, J. Ngiam, Z. Chen, D. H. Chia, and P. Koh, “Tiled convolutional
neural networks.” in Advances in Neural Information Processing Systems
(NIPS2010). Curran Associates, Inc., 2010, pp. 1279–1287.

[14] J. Max, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial
Transformer Networks,” in Advances in Neural Information Processing
Systems (NIPS2015). Curran Associates, Inc., 2015, pp. 2017–2025.

[15] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra, “DRAW: A
Recurrent Neural Network For Image Generation,” arXiv, pp. 1–11,
2015.

[16] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Im-
ages,” Technical report, University of Toronto, pp. 1–60, 2009.

[17] Z. Cai, Q. Fan, R. S. Feris, N. Vasconcelos, and U. C. S. Diego,
“A Unified Multi-scale Deep Convolutional Neural Network for Fast
Object Detection,” in Proc. of European Conference on Computer Vision
(ECCV2016), 2016, pp. 354–370.

[18] S. Bargoti and J. P. Underwood, “Image Segmentation for Fruit Detec-
tion and Yield Estimation in Apple Orchards,” Journal of Field Robotics,
vol. 34, no. 6, pp. 1039–1060, 2017.

[19] N. Audebert, B. L. Saux, and S. Lefèvre, “Semantic Segmentation of
Earth Observation Data Using Multimodal and Multi-scale Deep Net-
works,” in Proc. of Asian Conference on Computer Vision (ACCV2016),
2016, pp. 180–196.

[20] D. Marmanis, J. D. Wegner, S. Galliani, K. Schindler, M. Datcu,
U. Stilla, and R. Sensing, “Semantic Segmentation of Aerial Images
with an Ensemble of CNNs,” ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. III, no. July, pp. 473–480,
2016.

[21] R. Takahashi, T. Matsubara, and K. Uehara, “Scale-Invariant Recogni-
tion by Weight-Shared CNNs in Parallel,” in Proc. of the 9th Asian
Conference on Machine Learning (ACML2017), 2017, pp. 1–16.

[22] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional archi-
tecture of monkey striate cortex.” The Journal of Physiology, vol. 195,
no. 1, pp. 215–43, 1968.

[23] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[24] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely Connected Convo-
lutional Networks,” arXiv, pp. 1–12, 2016.

[25] K. He and X. Zhang, “Identity mappings in deep residual networks,”
Lecture Notes in Computer Science, vol. 9908, no. 1, pp. 630–645, 2016.

[26] S. Zagoruyko and N. Komodakis, “Wide Residual Networks,” arXiv, pp.
1–15, 2016.

[27] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger, “Deep Networks
with Stochastic Depth,” in Proc. of European Conference on Computer
Vision (ECCV2016), vol. 9905, 2016, pp. 646–661.

[28] S. Targ, D. Almeida, and K. Lyman, “ResNet In ResNet: Generalizing
Residual Architectures,” in Workshop on International Conference on
Learning Representations (ICLR2016), no. 1, 2016, pp. 1–4.

[29] D. Han, J. Kim, and J. Kim, “Deep Pyramidal Residual Networks,”
arXiv, pp. 1–9, 2016.

[30] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” arXiv, pp. 1–
11, 2015.

[31] D. G. Lowe, “Object Recognition from Local Scale-Invariant Features,”
in Proc of the 7th IEEE International Conference on Computer Vision
(ICCV1999), 2002, p. 1150.

[32] ——, “Distinctive Image Features from Scale-Invariant Keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[33] J. J. Koenderink, “Biological Cybernetics The Structure of Images,”
Biological Cybernetics, vol. 50, pp. 363–396, 1984.

[34] T. Lindeberg, “Detecting Salient Blob-Like Image Structures and Their
Scales with a Scale-Space Primal Sketch : A Method for Focus-of-
Attention,” International Journal of Computer Vision, vol. 11, no. 3,
pp. 283–318, 1993.

[35] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous
Driving ? The KITTI Vision Benchmark Suite,” in Proc. of the IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR2012), 2012, pp. 3354–3361.

[36] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian Detection :
An Evaluation of the State of the Art,” IEEE Trans Pattern Anal Mach
Intell, vol. 34, no. 4, pp. 743–761, 2012.

[37] C. Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” in Proc. of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS2015), vol. 2, 2015, pp.
562–570.

[38] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, “Single-Image Crowd
Counting via Multi-Column Convolutional Neural Network,” in Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR2016), 2016, pp. 589–597.

[39] M. Riesenhuber and T. Poggio, “Hierarchical models of object recog-
nition in cortex.” Nature Neuroscience, vol. 2, no. 11, pp. 1019–1025,
1999.

[40] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “Fitnets: Hints for Thin Deep Nets,” in Proc. of International
Conference on Learning Representations (ICLR2015), 2015, pp. 1–13.

[41] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for Simplicity: The All Convolutional Net,” in Proc. of International
Conference on Learning Representations (ICLR2015), 2015, pp. 1–14.

[42] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in Proc. of the 27th International Conference on
Machine Learning (ICML2010), no. 3, 2010, pp. 807–814.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification,” in Proc.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

of the IEEE International Conference on Computer Vision (ICCV2016),
vol. 11-18-Dece, 2016, pp. 1026–1034.

[44] L. V. D. Maaten and G. Hinton, “Visualizing Data using t-SNE,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

Ryo Takahashi is a graduate student of Gradu-
ate School of System Informatics, Kobe University,
Hyogo, Japan. He received the B.E. degree from
Kobe University. He investigated image classifica-
tion by deep neural network architectures.

Takashi Matsubara received his B.E., M.E., and
Ph.D. in engineering degrees from Osaka University,
Osaka, Japan, in 2011, 2013, and 2015, respectively.
He is currently an assistant professor at the Gradu-
ate School of System Informatics, Kobe University,
Hyogo, Japan. His research interests are in computa-
tional intelligence and computational neuroscience.

Kuniaki Uehara received his B.E., M.E., and
D.E. degrees in information and computer sciences
from Osaka University, Osaka, Japan, in 1978, 1980
and 1984, respectively. From 1984 to 1990, he was
with the Institute of Scientific and Industrial Re-
search, Osaka University as an Assistant Professor.
From 1990 to 1997, he was an Associate Professor
with Department of Computer and Systems Engi-
neering of Kobe University. From 1997 to 2002, he
was a Professor with the Research Center for Urban
Safety and Security of Kobe University. Currently he

is a Professor with Graduate School of System Informatics of Kobe University.

	I Introduction
	II Related Works
	II-A Deep CNNs
	II-B State-of-the-Art Deep CNNs for Image Classification
	II-C CNNs against Geometric Transformations

	III Weight-Shared Multi-Stage Network
	III-A Architecture of Weight-Shared Multi-Stage Network
	III-B Concepts of Weight-Shared Multi-Stage Network

	IV Optimization of WSMS-Net
	IV-A Combination with Existing CNNs
	IV-B Numbers of Stages
	IV-C Integration Layer

	V Experiments
	V-A Classification of CIFAR-10 and CIFAR-100 by WSMS-DenseNet
	V-B Classification of CIFAR-10 and CIFAR-100 by WSMS-Pre-ResNet
	V-C Comparison of WSMS-Net and image scaling data augmentation
	V-D Comparison with Existing CNNs using Multi-scale Feature Fusion
	V-E ImageNet classification by WSMS-ResNet

	VI Conclusion
	References
	Biographies
	Ryo Takahashi
	Takashi Matsubara
	Kuniaki Uehara

