2,079 research outputs found

    14-bit 2.2-MS/s sigma-delta ADC's

    Get PDF

    A 2x2 bit multiplier using hybrid 13t full adder with vedic mathematics method

    Get PDF
    Various arithmetic circuits such as multipliers require full adder (FA) as the main block for the circuit to operate. Speed and energy consumption become very vital in design consideration for a low power adder. In this paper, a 2x2 bit Vedic multiplier using hybrid full adder (HFA) with 13 transistors (13T) had been designed successfully. The design was simulated using Synopsys Custom Tools in General Purpose Design Kit (GPDK) 90 nm CMOS technology process. In this design, four AND gates and two hybrid FA (HFAs) are cascaded together and each HFA is constructed from three modules. The cascaded module is arranged in the Vedic mathematics algorithm. This algorithm satisfied the requirement of a fast multiplication operation because of the vertical and crosswise architecture from the Urdhva Triyakbyam Sutra which reduced the number of partial products compared to the conventional multiplication algorithm. With the combination of hybrid full adder and Vedic mathematics, a new combination of multiplier method with low power and low delay is produced. Performance parameters such as power consumption and delay were compared to some of the existing designs. With a 1V voltage supply, the average power consumption of the proposed multiplier was found to be 22.96 ÂľW and a delay of 161 ps

    Low loss, high contrast optical waveguides based on CMOS compatible LPCVD processing

    Get PDF
    A new class of integrated optical waveguide structures is presented, based on low cost CMOS compatible LPCVD processing. This technology allows for medium and high index contrast waveguides with very low channel attenuation. The geometry is basically formed by a rectangular cross-section silicon nitride (Si3N4)(Si_{3}N_{4}) filled with and encapsulated by silicon dioxide (SiO2)(SiO_{2}). The birefringence and minimal bend radius of the waveguide is completely controlled by the geometry of the waveguide layer structures. Experiments on typical geometries will be presented, showing excellent characteristics (channel attenuation ≤0.06 dB/cm, IL ≤0.6 dB, PDL ≤0.2 dB, Bg «1 x 10−310^{-3}, bend radius ≤500 μm)

    On-board processing architectures for satellite B-ISDN services

    Get PDF
    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system

    Design of a Magnetically Tunable Low Noise Amplifier in 0.13 um CMOS Technology

    Get PDF
    With legacy technologies present and approaching new wireless standards, the 1-10 GHz band of frequencies is quickly becoming saturated. Although saturated, the frequency bands are being utilized inefficiently. Cognitive radio, an intelligent wireless communication system, is the novel solution for the efficient utilization of the frequency bands. Front-end receivers for cognitive radio will need the capability to receive and process multiple frequency bands and a key component is the low noise amplifier (LNA). A tunable LNA using a new magnetically tuned input impedance matching network is presented. The LNA has been designed and simulated in a commercially available 0.13 Οm CMOS technology and is capable of tuning from 3.2 GHz to 4.6 GHz as S11 \u3c -10 dB. Within this bandwidth the maximum power gain is 16.2 dB, the maximum noise figure is 7.5 dB, and the minimum IIP3 is -6.4 dBm. The total power consumption of the LNA (neglecting the buffer required to drive the 50 Ί test equipment) is 50 mW. This tunable LNA introduces a new magnetically tunable matching technique and tuning scheme capable of continuous frequency variation for LNAs. It is expected that this technique could be expanded to realize LNAs with a tunable, narrow-band response that can cover the entire 1-10 GHz band of frequencies. The presented tunable LNA has demonstrated the capability to cover and process multiple frequencies and can be used for reconfigurable systems. A tunable LNA design is the first step in an effort to realize a fully reconfigurable front-end radio frequency (RF) receiver for future cognitive radio applications

    Implementation of arithmetic primitives using truly deep submicron technology (TDST)

    Get PDF
    The invention of the transistor in 1947 at Bell Laboratories revolutionised the electronics industry and created a powerful platform for emergence of new industries. The quest to increase the number of devices per chip over the last four decades has resulted in rapid transition from Small-Scale-Integration (SSI) and Large-Scale-lntegration (LSI), through to the Very-Large-Scale-Integration (VLSI) technologies, incorporating approximately 10 to 100 million devices per chip. The next phase in this evolution is the Ultra-Large-Scale-Integration (ULSI) aiming to realise new application domains currently not accessible to CMOS technology. Although technology is continuously evolving to produce smaller systems with minimised power dissipation, the IC industry is facing major challenges due to constraints on power density (W/cm2) and high dynamic (operating) and static (standby) power dissipation. Mobile multimedia communication and optical based technologies have rapidly become a significant area of research and development challenging a variety of technological fronts. The future emergence or 4G (4th Generation) wireless communications networks is further driving this development, requiring increasing levels of media rich content. The processing requirements for capture, conversion, compression, decompression, enhancement and display of higher quality multimedia, place heavy demands on current ULSI systems. This is also apparent for mobile applications and intelligent optical networks where silicon chip area and power dissipation become primary considerations. In addition to the requirements for very low power, compact size and real-time processing, the rapidly evolving nature of telecommunication networks means that flexible soft programmable systems capable of adaptation to support a number of different standards and/or roles become highly desirable. In order to fully realise the capabilities promised by the 4G and supporting intelligent networks, new enabling technologies arc needed to facilitate the next generation of personal communications devices. Most of the current solutions to meet these challenges are based on various implementations of conventional architectures. For decades, silicon has been the main platform of computing, however it is slow, bulky, runs too hot, and is too expensive. Thus, new approaches to architectures, driving multimedia and future telecommunications systems, are needed in order to extend the life cycle of silicon technology. The emergence of Truly Deep Submicron Technology (TDST) and related 3-D interconnection technologies have provided potential alternatives from conventional architectures to 3-D system solutions, through integration of IDST, Vertical Software Mapping and Intelligent Interconnect Technology (IIT). The concept of Soft-Chip Technology (SCT) entails integration of Soft• Processing Circuits with Soft-Configurable Circuits . This concept can effectively manipulate hardware primitives through vertical integration of control and data. Thus the notion of 3-D Soft-Chip emerges as a new design algorithm for content-rich multimedia, telecommunication and intelligent networking system applications. 3•D architectures (design algorithms used suitable for 3-D soft-chip technology), are driven by three factors. The first is development of new device technology (TDST) that can support new architectures with complexities of 100M to 1000M devices. The second is development of advanced wafer bonding techniques such as Indium bump and the more futuristic optical interconnects for 3-D soft-chip mapping. The third is related to improving the performance of silicon CMOS systems as devices continue to scale down in dimensions. One of the fundamental building blocks of any computer system is the arithmetic component. Optimum performance of the system is determined by the efficiency of each individual component, as well as the network as a whole entity. Development of configurable arithmetic primitives is the fundamental focus in 3-D architecture design where functionality can be implemented through soft configurable hardware elements. Therefore the ability to improve the performance capability of a system is of crucial importance for a successful design. Important factors that predict the efficiency of such arithmetic components are: • The propagation delay of the circuit, caused by the gate, diffusion and wire capacitances within !he circuit, minimised through transistor sizing. and • Power dissipation, which is generally based on node transition activity. [2] Although optimum performance of 3-D soft-chip systems is primarily established by the choice of basic primitives such as adders and multipliers, the interconnecting network also has significant degree of influence on !he efficiency of the system. 3-D superposition of devices can decrease interconnect delays by up to 60% compared to a similar planar architecture. This research is based on development and implementation of configurable arithmetic primitives, suitable to the 3-D architecture, and has these foci: • To develop a variety of arithmetic components such as adders and multipliers with particular emphasis on minimum area and compatible with 3-D soft-chip design paradigm. • To explore implementation of configurable distributed primitives for arithmetic processing. This entails optimisation of basic primitives, and using them as part of array processing. In this research the detailed designs of configurable arithmetic primitives are implemented using TDST O.l3µm (130nm) technology, utilising CAD software such as Mentor Graphics and Cadence in Custom design mode, carrying through design, simulation and verification steps
    • …
    corecore