4 research outputs found

    Design and Characterization of CMOS/SOI Image Sensors

    Get PDF
    The design, operation, and characterization of CMOS imagers implemented using: 1) regular CMOS wafers with a 0.5-mum CMOS analog process; 2) regular CMOS wafers with a 0.35-mum CMOS analog process; and 3) silicon-on-insulator (SOI) wafers in conjunction with a 0.35-mum CMOS analog process, are discussed in this paper. The performances of the studied imagers are compared in terms of quantum efficiency, dark current, and optical bandwidth. It is found that there is strong dependence of quantum efficiency of the photodiodes on the architecture of the image sensor. The results of this paper are useful for designing and modeling CMOS/SOI image sensor

    Design and Characterization of CMOS/SOI Image Sensors

    Full text link

    Novel ultraviolet scintillators based on semiconductor quantum dot emitters for significantly enhanced photodetection and photovoltaics

    Get PDF
    Ankara : The Department of Physics and the Institute of Engineering and Sciences of Bilkent University, 2007.Thesis (Master's) -- Bilkent University, 2007.Includes bibliographical references leaves 54-61Silicon photonics opens opportunities to realize optoelectronic devices directly on large-scale integrated electronics, leveraging advanced Si fabrication and computation capabilities. However, silicon is constrained in different aspects for use in optoelectronics. Such one limitation is observed in Si based photodetectors, cameras, and solar cells that exhibit very poor responsivity in the ultraviolet (UV) spectral range. Si CMOS photodetectors and CCD cameras cannot be operated in UV, despite the strong demand for UV detection and imaging in security applications. Also, although 95% of the photovoltaics market is dominated by Si based solar cells, silicon is not capable of using UV radiation of the solar spectrum for solar energy conversion, as required especially in space applications. In this thesis for the first time, we demonstrate novel UV scintillators made of semiconductor quantum dot emitters hybridized on Si detectors and cameras to detect and image in UV with significantly improved responsivity and on Si solar cells to generate electrical energy from UV radiation with significantly improved solar conversion efficiency. We present the device conception, design, fabrication, experimental characterization, and theoretical analysis of these UV nanocrystal scintillators. Integrating highly luminescent CdSe/ZnS core-shell nanocrystals, we demonstrate hybrid photodetectors that exhibit two-orders-of-magnitude peak enhancement in their responsivity. We also develop photovoltaic nanocrystal scintillators to enhance open-circuit voltage, short-circuit current, fill factor, and solar conversion efficiency in UV. Hybridizing CdSe/ZnS quantum dots on Si photovoltaic devices, we show that the solar conversion efficiency is doubled under white light illumination (Xe lamp). Such UV scintillator nanocrystals hold great promise to enable photodetection and imaging in UV and extend photovoltaic activity to UV.Mutlugün, EvrenM.S

    Noise-limited scene-change detection in images

    Get PDF
    This thesis describes the theoretical, experimental, and practical aspects of a noise-limited method for scene-change detection in images. The research is divided into three sections: noise analysis and modelling, dual illumination scene-change modelling, and integration of noise into the scene-change model. The sources of noise within commercially available digital cameras are described, with a new model for image noise derived for charge-coupled device (CCD) cameras. The model is validated experimentally through the development of techniques that allow the individual noise components to be measured from the analysis of output images alone. A generic model for complementary metal-oxide-semiconductor (CMOS) cameras is also derived. Methods for the analysis of spatial (inter-pixel) and temporal (intra-pixel) noise are developed. These are used subsequently to investigate the effects of environmental temperature on camera noise. Based on the cameras tested, the results show that the CCD camera noise response to variation in environmental temperature is complex whereas the CMOS camera response simply increases monotonically. A new concept for scene-change detection is proposed based upon a dual illumination concept where both direct and ambient illumination sources are present in an environment, such as that which occurs in natural outdoor scenes with direct sunlight and ambient skylight. The transition of pixel colour from the combined direct and ambient illuminants to the ambient illuminant only is modelled. A method for shadow-free scene-change is then developed that predicts a pixel's colour when the area in the scene is subjected to ambient illumination only, allowing pixel change to be distinguished as either being due to a cast shadow or due to a genuine change in the scene. Experiments on images captured in controlled lighting demonstrate 91% of scene-change and 83% of cast shadows are correctly determined from analysis of pixel colour change alone. A statistical method for detecting shadow-free scene-change is developed. This is achieved by bounding the dual illumination model by the confidence interval associated with the pixel's noise. Three benefits arise from the integration of noise into the scene-change detection method: - The necessity for pre-filtering images for noise is removed; - All empirical thresholds are removed; and - Performance is improved. The noise-limited scene-change detection algorithm correctly classifies 93% of scene-change and 87% of cast shadows from pixel colour change alone. When simple post-analysis size-filtering is applied both these figures increase to 95%
    corecore