7,487 research outputs found

    A novel tuning technique for distributed voltage controlled oscillators

    Get PDF
    A novel current-steering delay-balanced tuning technique for distributed voltage controlled oscillators (DVCO) is demonstrated. This tuning technique is used to design a DVCO operating at 10 GHz in a 0.35 μm CMOS technology. The DVCO is continuously tunable between 9.9 and 10.3 GHz. Special attention is paid to the layout issues for the high frequency design

    Deriving (MO)(I)CCCII Based Second-order Sinusoidal Oscillators with Non-interactive Tuning Laws using State Variable Method

    Get PDF
    The paper discusses systematic realization of second-order sinusoidal oscillators using multiple-output second-generation current controlled conveyor (MO-CCCII) and/or its inverting equivalent, namely the multiple-output inverting second-generation current controlled conveyor (MO-ICCCII) by state variable method. State variable method is a powerful technique and has been used extensively in the past to realize active RC oscillators using a variety of active building blocks (ABB). In this work, a noninteractive relationship between the condition of oscillation (CO) and the frequency of oscillation (FO) has been chosen priori and then state variable method is applied to derive the oscillators with grounded capacitors. All the resulting oscillator circuits, eight of them, are “resistor-less”, employ grounded capacitors and do not use more than three (MO)(I)CCCIIs. PSPICE simulation results of a possible CMOS implementation of the oscillators using 0:35μm TSMC CMOS technology parameters have validated their workability

    7-decade tuning range CMOS OTA-C sinusoidal VCO

    Get PDF
    A new operational transconductance amplifier-capacitor (OTA-C) based sinusoidal voltage-controlled oscillator (VCO) has been designed and fabricated, the oscillation frequency of which can be tuned from 74 mHz to 1 MHz. The VCO uses a new OTA whose transconductance is adjusted by using a set of special current mirrors. These current mirrors operate in weak inversion and their gain can be controlled continuously through a gate voltage over many decades. This is the first report of such a wide tuning range for CMOS sinusoidal oscillators. Experimental results are provided

    A Coupled Sawtooth Oscillator combining Low Jitter and High Control Linearity

    Get PDF
    A new type of current controlled oscillator (CCO) is presented that combines excelllent control linearity with low timing jitter. The problem of overshoot in traditional relaxation oscillators is solved by using an alternative for the Schmitt-trigger. Circuits realised in a 0.8µm CMOS process show a HD2 < -65dB and HD3 < -85 dB (¿f=500 kHz). The measured phase noise is smaller than -100dBc/Hz at 10kHz carrier offset frequency at FOSC=1.5 MHz for a supply current of 360µA

    Silicon-based distributed voltage-controlled oscillators

    Get PDF
    Distributed voltage-controlled oscillators (DVCOs) are presented as a new approach to the design of silicon VCOs at microwave frequencies. In this paper, the operation of distributed oscillators is analyzed and the general oscillation condition is derived, resulting in analytical expressions for the frequency and amplitude. Two tuning techniques for DVCOs are demonstrated, namely, the inherent-varactor tuning and delay-balanced current-steering tuning. A complete analysis of the tuning techniques is presented. CMOS and bipolar DVCOs have been designed and fabricated in a 0.35-μm BiCMOS process. A 10-GHz CMOS DVCO achieves a tuning range of 12% (9.3-10.5 GHz) and a phase noise of -103 dBc/Hz at 600 kHz offset from the carrier. The oscillator provides an output power of -4.5 dBm without any buffering, drawing 14 mA of dc current from a 2.5-V power supply. A 12-GHz bipolar DVCO consuming 6 mA from a 2.5-V power supply is also demonstrated. It has a tuning range of 26% with a phase noise of -99 dBc/Hz at 600 kHz offset from the carrier

    CMOS OTA-C high-frequency sinusoidal oscillators

    Get PDF
    Several topology families are given to implement practical CMOS sinusoidal oscillators by using operational transconductance amplifier-capacitor (OTA-C) techniques. Design techniques are proposed taking into account the CMOS OTA's dominant nonidealities. Building blocks are presented for amplitude control, both by automatic gain control (AGC) schemes and by limitation schemes. Experimental results from 3- and 2- mu m CMOS (MOSIS) prototypes that exhibit oscillation frequencies of up to 69 MHz are obtained. The amplitudes can be adjusted between 1 V peak to peak and 100 mV peak to peak. Total harmonic distortions from 2.8% down to 0.2% have been measured experimentally.Comisión Interministerial de Ciencia y Tecnología ME87-000

    Concepts and methods in optimization of integrated LC VCOs

    Get PDF
    Underlying physical mechanisms controlling the noise properties of oscillators are studied. This treatment shows the importance of inductance selection for oscillator noise optimization. A design strategy centered around an inductance selection scheme is executed using a practical graphical optimization method to optimize phase noise subject to design constraints such as power dissipation, tank amplitude, tuning range, startup condition, and diameters of spiral inductors. The optimization technique is demonstrated through a design example, leading to a 2.4-GHz fully integrated, LC voltage-controlled oscillator (VCO) implemented using 0.35-μm MOS transistors. The measured phase-noise values are -121, -117, and -115 dBc/Hz at 600-kHz offset from 1.91, 2.03, and 2.60-GHz carriers, respectively. The VCO dissipates 4 mA from a 2.5-V supply voltage. The inversion mode MOSCAP tuning is used to achieve 26% of tuning range. Two figures of merit for performance comparison of various oscillators are introduced and used to compare this work to previously reported results

    A New Technique for the Design of Multi-Phase Voltage Controlled Oscillators

    Get PDF
    © 2017 World Scientific Publishing Company.In this work, a novel circuit structure for second-harmonic multi-phase voltage controlled oscillator (MVCO) is presented. The proposed MVCO is composed of (Formula presented.) ((Formula presented.) being an integer number and (Formula presented.)2) identical inductor–capacitor ((Formula presented.)) tank VCOs. In theory, this MVCO can provide 2(Formula presented.) different phase sinusoidal signals. A six-phase VCO based on the proposed structure is designed in a TSMC 0.18(Formula presented.)um CMOS process. Simulation results show that at the supply voltage of 0.8(Formula presented.)V, the total power consumption of the six-phase VCO circuit is about 1(Formula presented.)mW, the oscillation frequency is tunable from 2.3(Formula presented.)GHz to 2.5(Formula presented.)GHz when the control voltage varies from 0(Formula presented.)V to 0.8(Formula presented.)V, and the phase noise is lower than (Formula presented.)128(Formula presented.)dBc/Hz at 1(Formula presented.)MHz offset frequency. The proposed MVCO has lower phase noise, lower power consumption and more outputs than other related works in the literature.Peer reviewedFinal Accepted Versio

    Very high frequency CMOS OTA-C quadrature oscillators

    Get PDF
    An approach to the design of high-frequency monolithic voltage-controlled oscillators using operational transconductance amplifiers and capacitors is given. Results from two 3 μm CMOS prototypes are presented. Both frequency and amplitude of the oscillations can be tuned by means of control voltages. Programmable oscillator frequencies up to 56.1 MHz are obtained, and the amplitudes are adjustable between 1 V peak-to-peak and 100 mV peak-to-peak. Total harmonic distortions from 2.8% down to 0.2% were experimentally measured

    Design of a tunable multi-band differential LC VCO using 0.35 mu m SiGe BiCMOS technology for multi-standard wireless communication systems

    Get PDF
    In this paper, an integrated 2.2-5.7GHz multi-band differential LC VCO for multi-standard wireless communication systems was designed utilizing 0.35 mu m SiGe BiCMOS technology. The topology, which combines the switching inductors and capacitors together in the same circuit, is a novel approach for wideband VCOs. Based on the post-layout simulation results, the VCO can be tuned using a DC voltage of 0 to 3.3 V for 5 different frequency bands (2.27-2.51 GHz, 2.48-2.78 GHz, 3.22-3.53 GHz, 3.48-3.91 GHz and 4.528-5.7 GHz) with a maximum bandwidth of 1.36 GHz and a minimum bandwidth of 300 MHz. The designed and simulated VCO can generate a differential output power between 0.992 and -6.087 dBm with an average power consumption of 44.21 mW including the buffers. The average second and third harmonics level were obtained as -37.21 and -47.6 dBm, respectively. The phase noise between -110.45 and -122.5 dBc/Hz, that was simulated at 1 MHz offset, can be obtained through the frequency of interest. Additionally, the figure of merit (FOM), that includes all important parameters such as the phase noise, the power consumption and the ratio of the operating frequency to the offset frequency, is between -176.48 and -181.16 and comparable or better than the ones with the other current VCOs. The main advantage of this study in comparison with the other VCOs, is covering 5 frequency bands starting from 2.27 up to 5.76 GHz without FOM and area abandonment. Output power of the fundamental frequency changes between -6.087 and 0.992 dBm, depending on the bias conditions (operating bands). Based on the post-layout simulation results, the core VCO circuit draws a current between 2.4-6.3 mA and between 11.4 and 15.3 mA with the buffer circuit from 3.3 V supply. The circuit occupies an area of 1.477 mm(2) on Si substrate, including DC, digital and RF pads
    corecore