144 research outputs found

    Tools for efficient Deep Learning

    Get PDF
    In the era of Deep Learning (DL), there is a fast-growing demand for building and deploying Deep Neural Networks (DNNs) on various platforms. This thesis proposes five tools to address the challenges for designing DNNs that are efficient in time, in resources and in power consumption. We first present Aegis and SPGC to address the challenges in improving the memory efficiency of DL training and inference. Aegis makes mixed precision training (MPT) stabler by layer-wise gradient scaling. Empirical experiments show that Aegis can improve MPT accuracy by at most 4\%. SPGC focuses on structured pruning: replacing standard convolution with group convolution (GConv) to avoid irregular sparsity. SPGC formulates GConv pruning as a channel permutation problem and proposes a novel heuristic polynomial-time algorithm. Common DNNs pruned by SPGC have maximally 1\% higher accuracy than prior work. This thesis also addresses the challenges lying in the gap between DNN descriptions and executables by Polygeist for software and POLSCA for hardware. Many novel techniques, e.g. statement splitting and memory partitioning, are explored and used to expand polyhedral optimisation. Polygeist can speed up software execution in sequential and parallel by 2.53 and 9.47 times on Polybench/C. POLSCA achieves 1.5 times speedup over hardware designs directly generated from high-level synthesis on Polybench/C. Moreover, this thesis presents Deacon, a framework that generates FPGA-based DNN accelerators of streaming architectures with advanced pipelining techniques to address the challenges from heterogeneous convolution and residual connections. Deacon provides fine-grained pipelining, graph-level optimisation, and heuristic exploration by graph colouring. Compared with prior designs, Deacon shows resource/power consumption efficiency improvement of 1.2x/3.5x for MobileNets and 1.0x/2.8x for SqueezeNets. All these tools are open source, some of which have already gained public engagement. We believe they can make efficient deep learning applications easier to build and deploy.Open Acces

    Town of Surry annual report town officers and inventory of ratable property of Surry, New Hampshire for the year ending December 31, 2019 and school district officers for the year ending June 30, 2019.

    Get PDF
    This is an annual report containing vital statistics for a town/city in the state of New Hampshire

    Action Logic Programs: How to Specify Strategic Behavior in Dynamic Domains Using Logical Rules

    Get PDF
    We discuss a new concept of agent programs that combines logic programming with reasoning about actions. These agent logic programs are characterized by a clear separation between the specification of the agent’s strategic behavior and the underlying theory about the agent’s actions and their effects. This makes it a generic, declarative agent programming language, which can be combined with an action representation formalism of one’s choice. We present a declarative semantics for agent logic programs along with (two versions of) a sound and complete operational semantics, which combines the standard inference mechanisms for (constraint) logic programs with reasoning about actions
    • …
    corecore