
Action Logic Programs — How to Specify
Strategic Behavior in Dynamic Domains Using

Logical Rules

D i s s e r t a t i o n

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Diplom-Informatiker Conrad Drescher
geboren am 31.01.1977 in Gräfelfing

Betreuender Hochschullehrer: Prof. Dr. rer. nat. habil. Michael Thielscher
School of Computer Science and Engineering
The University of New South Wales
Australia

Externer Gutachter: Prof. Dr. Tommie Meyer
Meraka Institute
African Advanced Institute for ICT
South Africa

Tag der Verteidigung: 19.07.2010

Oxford im März 2011

Contents

1 Introduction 1
1.1 Logical Action Calculi . 2

1.1.1 Event, Fluent, and Situation Calculus 2
1.1.2 Planning Languages . 5

1.2 Action Programming Languages . 6
1.2.1 Golog . 6
1.2.2 Event Calculus-based Language 6
1.2.3 Flux . 7
1.2.4 Action Logic Programs . 7

1.3 Logic-based Knowledge Representation 8
1.3.1 First Order Logic . 8
1.3.2 Second Order Logic . 10
1.3.3 Intuitionistic Logic . 11
1.3.4 Sub-structural Logic . 11
1.3.5 Non-monotonic Logic . 13
1.3.6 Modal Logic . 13
1.3.7 The Choice for First Order Logic 14

1.4 Structure of the Thesis . 14

2 Preliminaries 16
2.1 First Order Logic and Notation . 16
2.2 Logic Programming . 17

2.2.1 Definite Logic Programs . 17
2.2.2 Constraint Logic Programming 19

2.3 Unifying Action Calculus . 20
2.3.1 Formal Basics . 21
2.3.2 Domain Axiomatizations . 21
2.3.3 Concrete Action Calculi in UAC 23
2.3.4 Modularity of Domain Axiomatizations 31
2.3.5 Reasoning with Action Theories 33

2.4 Description Logics . 34
2.4.1 Basic Description Logics . 35
2.4.2 ABox Update . 37

i

Contents

3 Action Logic Programs 44
3.1 Syntax of Action Logic Programs . 45
3.2 Semantics of Action Logic Programs 47
3.3 Proof Theory . 47

3.3.1 Elementary Case — LP(D) 48
3.3.2 General Case — CLP(D) . 51
3.3.3 Refinements and Extensions of the Proof Calculi 56

3.4 Computed Answers and Inferred Plans 63
3.5 Planning Completeness . 64

3.5.1 Properties of Background Theories 64
3.5.2 Strong Planning Completeness 68
3.5.3 ALPs for Conditional Planning 70
3.5.4 Conditional versus Conformant Planning 71

3.6 Planning with Sensing . 72
3.6.1 Sensing Actions in the UAC 73
3.6.2 Discussion of the Approach 75
3.6.3 ALPs for Planning in the Presence of Sensing Actions 76

3.7 Offline vs. Online Execution . 78

4 ALPprolog 80
4.1 ALPprolog Programs . 81
4.2 Propositional Fluent Calculus . 82
4.3 Propositional Fluent Calculus with Sensing 84
4.4 Action Theory Representation . 86
4.5 Reasoning for ALPprolog . 87

4.5.1 The Update Problem . 87
4.5.2 The Entailment Problem . 88
4.5.3 The Sensing Problem . 88

4.6 Soundness of ALPprolog . 89
4.7 Evaluation . 89

4.7.1 Example I — The Mailbot Domain 89
4.7.2 Example II — The Wumpus World 90
4.7.3 Extension to Offline Planning 94
4.7.4 Application in General Game Playing 95
4.7.5 Availability of ALPprolog . 95

5 DL-based Action Logic Programs 96
5.1 ABox Update in the Unifying Action Calculus 97

5.1.1 Correspondence between FO and State Formulas 97
5.1.2 ABox Update Action Domains 98
5.1.3 UAC Semantics for ABox Update 100

ii

Contents

5.1.4 Modularity of ABox Update Action Domains 101
5.2 Implementing ALPs atop ABox Update 101

5.2.1 Query Answering for Action Domains DDL 102
5.2.2 Implementing ABox Update 104
5.2.3 Evaluation of ABox Update Implementation 110
5.2.4 Reasoning with Updated ABoxes 113
5.2.5 Evaluation of Reasoning with Updated ABoxes 116

5.3 Perspectives . 123

6 Relation to Existing Work 124
6.1 Golog . 124

6.1.1 The Relation between ALPs and Basic Golog 125
6.1.2 Expressing Golog Programs as ALPs 127
6.1.3 Advanced Golog Features and ALPs 129
6.1.4 Golog Interpreter . 130

6.2 Flux . 130
6.2.1 Semantics of Flux . 131
6.2.2 Flux as Action Domain Reasoner for ALPs 131
6.2.3 Advanced Features of Flux 133

6.3 Domain-independent Planners . 134
6.4 Future Action Domain Reasoners . 135

6.4.1 Progression in Situation Calculus 135
6.4.2 Proper Knowledge Bases and Situation Calculus 136

7 Conclusion 137
7.1 Summary . 137
7.2 Directions for Future Work . 138

Bibliography 139

List of own Publications 152

iii

Acknowledgements

First of all i want to express my gratitude towards my supervisor Michael Thielscher
for his continuous support throughout the years, for all the helpful discussions, and
for running such a very nice group. Very special thanks are also due to Franz Baader,
Matthias Fichtner, Ozan Kahramanogullari, Hongkai Liu, Carsten Lutz, Maja Mili-
cic, Uwe Petersohn, Stephan Schiffel, Peter Steinke, Hannes Strass, Sebastian Voigt,
and Dmitry Tishkovsky — in one way or another they have all contributed substan-
tially to the genesis of this thesis. A big special thanks goes to Tommie Meyer for
accepting to be my external reviewer.

v

1 Introduction

Imagine a software agent situated in some kind of dynamic environment; i.e. there
are mutable properties, both under, and beyond the agent’s control. Now imagine
the agent is trying to achieve some goal in that dynamic domain: The agent is facing
an initial state of the world, and via some actions it is trying to transform this state
into a world state that satisfies the goal. The agent may directly execute the actions
in an online fashion, hoping that it will achieve the goal. But the agent can also
search for a sequence of actions that will guarantee that the goal is achieved, i.e. the
agent can do offline planning. In both cases the agent has to perform some form
of reasoning, both about the state it is currently in, and about the strategy that
might lead to the goal. In this thesis we are looking at the problem of how to specify
appropriate strategies for this type of agent in both the online and the offline setting.

This ”agent” metaphor is quite general: Our agent could be a physical agent, e.g.,
an autonomous robot, or it could be a software agent, e.g., a broker service on the
web trying to compose other web services so that a certain user demand is satisfied.
There are two main ingredients for this metaphor to work: First of all, we need a
model of the dynamic domain. For this we need to be able to specify what the domain
looks like (initially, currently, finally), and we need to know how it evolves once some
actions are executed. But the second ingredient is equally important: The model of
the dynamic domain is likely to admit a plethora of possible agent behaviors; and
it is unlikely that every such behavior can be considered useful (Imagine a robot
that just keeps moving back and forth). Thus the second important ingredient for
our ”agent in a dynamic domain” metaphor is some means to single out the useful
behaviors from the possible. It is this task that this work is foremost concerned
with.

Now we can imagine many different models of the dynamic domain, and likewise
many different strategy selection mechanisms. The only restriction is that a model
of the dynamic domain has to be formal and symbolic, in the sense that it can
actually be implemented on a computer. Apart from that, the model can be prob-
abilistic, logic-based, ad-hoc, etc.. The strategy can be purely reactive, based on
formalizations of beliefs, desires, and intentions, utility-maximizing, etc..

What we will do in this thesis is to use first order logical rules (more specifically,
Horn clauses) to specify agent strategies atop of dynamic domains that are likewise
modeled in classical first order (and sometimes second order) logic.

One advantage of formal logic is that it is a well-studied formal model. Conse-
quently, we can reason fully formally over properties that apply to the approach as

1

Chapter 1 Introduction

a whole, to a specific instance, etc.. The formal semantics of logic ensures that we
always know precisely what our modeling means — there is no ambiguity. In the
case of a more ad-hoc approach the semantics is given by the actual implementation
— the program means what it does. As a result a change in the implementation may
result in a drastic change in the meaning of the program. The main drawback of a
principled logic-based model is that it seems to be hard to master; people naturally
seem to prefer the more ad-hoc approaches. This thesis is based on a logic-based
modeling, with the hope that it is simple, and intuitive enough for people to find it
useful. Extending our work to a mixed logic- and probability-based model is left as
a research challenge for future work.

The rest of this introduction is organized as follows: We start with an introduction
to logic-based models of dynamic domains. After that we give a brief introduction
to the existing approaches to specifying strategic behaviour in dynamic domains
(that have been formalized in classical logic). Next we discuss a range of different
logics that have been put forth; here we focus especially on their merits with regard
to reasoning about dynamic domains. It is here where we will try to motivate our
choices wrt. the logic underlying the material presented in this thesis. Finally, we
include a guide to the structure of the thesis.

1.1 Reasoning about Actions and Change with Logical
Action Calculi

In this section we recall the existing approaches to modeling dynamic domains in
classical logic. In particular, this will be the Event, the Fluent, and the Situation
Calculus. We will also provide a brief overview of research in planning formalisms:
These typically are not directly based on logic — but more often than not they can
equivalently be expressed as a fragment of one of the aforementioned action calculi.

1.1.1 Event, Fluent, and Situation Calculus

Let us now introduce the three major classical action calculi. There are three that
stick more or less close to classical first order logic: The Event, the Fluent, and the
Situation Calculus. We start by recalling the respective basic ideas.

Situation Calculus

The first logic-based formalism for modeling dynamic domains to be introduced
has been the Situation Calculus of McCarthy [McCarthy, 1963]. The basic idea
introduced there is to extend ordinary logical atoms like, e.g., On(Block1,Block2)
by an additional argument denoting the time-point when this logical atom holds.
The time structure invented for this purpose is that of situations (giving Situation

2

1.1 Logical Action Calculi

Calculus its name): S0 is a term that is used to denote the initial situation. Next
we have action terms, like, e.g., Move(Block1,Table), and these are used to build
new situations from old ones. To see how this works consider, e.g., the following
statement:

On(Block1,Table,Do(Move(Block1,Table), S0)),

expressing that a certain block will be located on the table if it has just been moved
there.1 Such an atom expressing time-dependent information is called a fluent.
Of course, in the initial, or any other, situation there may be several actions that
are applicable. Depending upon the choice of a particular action, a different next
situation is obtained — thus situations provide a model of branching time.

Now assume that we axiomatize the effects of Block1 being moved to the table as

Poss(Move(Block1,Table), s) ⊃
On(Block1,Table,Do(Move(Block1,Table), s)),

meaning that, if we move a block to the table in some situation s, then in the
next situation it will be on the table. Furthermore, if we axiomatize the action
precondition as

Poss(Move(Block1,Table), s) ≡ >,

then from this together with the effect axiom we can conclude that

On(Block1,Table,Do(Go(Block1,Table), S0)).

But assume we had some more information about the initial situation, like, e.g.,

On(Block3,Table, S0) ∧On(Block3,Table, S0).

Now from the effect axiom together with the precondition axiom we cannot con-
clude anything about the location of blocks number two and three at time point
Move(Go(Block1,Table), s)): Are they still sitting on the table? Intuitively, the ac-
tion of moving block number one should have no effect on the location of the other
two blocks. Especially, we do not want to include the fact that their location is not
affected by the action into the effect axiom — doing so in general would result in
huge axiomatizations, if it is feasible at all. This problem of specifying what is, and
what is not, affected by an action has become known as the frame problem — it has
first been described by McCarthy and Hayes in 1969 [McCarthy and Hayes, 1969].
The name given to the problem derives from a physics expression — here the ”frame
of reference” denotes those parameters that remain unchanged.

1In this introductory example we gloss over some details of the model — e.g., we ignore the fact
that Block1 may be blocked. A fully worked model is featured in chapter 2.

3

Chapter 1 Introduction

The frame problem spawned a large number of solution attempts, and, over time,
also solutions. It was one of the problems driving the research in non-monotonic
logic — maybe even the most important. For example, McCarthy himself invented
the formalism of circumscription with solving the frame problem being among his
goals [McCarthy, 1980]. But eventually, a solution to the frame problem was also
found in classical, monotonic logic by Reiter: A comprehensive presentation of this
solution can be found in [Reiter, 2001a], the most up to date book on the Situation
Calculus. The basic idea of Reiter’s solution to the frame problem is to enumerate
for every fluent all the actions that might affect it; in our small example domain this
could look as follows:

On(x, y,Do(a, s)) ≡ a = Move(x, y)∨
(On(x, y, s) ∧ ¬(∃z)z 6= y ∧ a = Move(x, z))

This is to say that a mutable property of the domain continues to hold unless it
explicitly is changed by some action.

The use of a logical equivalence in the axiom means that we assume that the
right hand-side of the equivalence constitutes an explanation closure for the fluent:
It enumerates all the possible reasons for the fluent to be true at some time point;
there cannot be other causes. In some cases such a strict solution to the frame
problem may be undesirable: We might want to allow the truth values of some
fluents to freely fluctuate from one timepoint to another. Consider, e.g., a fluent
that is not under the sole control of the agent. A solution to this issue, as well as a
detailed treatment of Reiter’s solution to the frame problem, is contained in chapter
2.

Event Calculus

The Event Calculus has been introduced in [Kowalski and Sergot, 1986] as a logic
programming formalism. It has later been reformulated in logic, appealing to cir-
cumscription to solve the frame problem [Shanahan, 1995]. The major difference
between the Situation and the Event Calculus is that the latter uses a linear time
structure — the natural, or the positive real numbers. There are two book-length
treatments of the Event Calculus: In [Shanahan, 1997] the reader can find material
on both the logic programming and the circumscription version, whereas the more
recent [Mueller, 2006] focuses on the circumscription version only.

Different versions of the Event Calculus have been applied to different problem
types — for example, Event Calculus has been used to abduce which actions must
have occurred given some observations. For our ”agent” metaphor this kind of rea-
soning is not needed — the agent should always know which actions it has executed.
In chapter 2 below we introduce a version of the Event Calculus that is suitable for

4

1.1 Logical Action Calculi

planning, and, at the same time, does not appeal to circumscription for solving the
frame problem; it stays entirely within classical first order logic instead.

Fluent Calculus

The Fluent Calculus is nowadays usually presented as a modern extension of Re-
iter’s Situation Calculus. The major difference to the latter has been the intro-
duction of a formal notion of a state — this is a first order term describing col-
lections of fluents. Originally introduced also as a logic programming formalism in
[Hölldobler and Schneeberger, 1990], it initially also had strong roots in non-classical
logic, namely linear logic. It has been reformulated in [Thielscher, 1999a] appealing
to intuitions familiar from classical logic instead. The frame problem has been solved
in the Fluent Calculus by applying first order quantification to state terms.

Another important difference between the Fluent and the Situation Calculus is
that the former is action-centered while the latter is fluent-centered — at least in the
popular version based on Reiter’s successor state axioms. That is to say, in Fluent
Calculus we specify for each action the effects it has while a successor state axiom
specifies for a fluent by which actions it is affected. For our agent, who is chiefly
interested in the effects of its actions, this action-centrism seems to be more natural.
It has also been shown that this action-centered modeling has inferential advantages
compared to the fluent-centered modeling [Thielscher, 1999b].

In the most recent reformulation [Thielscher, 2007] of the Fluent Calculus the
formal notion of a state has been eliminated, so that the main difference between the
Fluent and the Situation Calculus now is that between being action-based and being
fluent-based. It turns out that, for this version of the Fluent Calculus, first order
quantification over single fluents (instead of collections of fluents) is also enough to
solve the frame problem. It is this most recent version of the Fluent Calculus that
we are using in this thesis — a formal introduction can again be found in chapter 2.

1.1.2 Planning Languages

The first, and most famous, dedicated planning system that has been developed is
STRIPS [Fikes and Nilsson, 1971]. Here, the initial state is specified by a set of
(positive) fluents, and actions are identified with ”add” and ”delete” operations on
this set. A plan consists of a sequence of actions achieving some goal — planning
is the problem of finding a plan. Compared to the major action calculi discussed
above this approach is of very restricted expressivity: We can only express complete
information — every fluent is either true (contained in the state) or false (otherwise).

Even though there have been numerous expressive extensions to this very ba-
sic planning language these languages are still quite restrictive. Our action logic
programs will be capable of finding solutions to planning problems formulated in

5

Chapter 1 Introduction

unrestricted action calculi.

1.2 Action Programming Languages

Let us now turn to the main topic of this thesis — action programming languages.
These are programming languages that can be used to specify the strategy used by
an agent in some dynamic domain. The program determines the sequence of actions
that the agent is executing, trying to achieve its goal.

Already in the same year when the frame problem has been discovered, in [Green, 1969]
the idea of solving planning problems in the Situation Calculus by resolution the-
orem proving has been put forth. Action logic programs are based upon the same
idea: Theorem proving atop of logic-based action theories.

Up to now — to the best of our knowledge — only three action programming lan-
guages that use an action calculus world model in classical logic have been proposed:

• Golog, which is built atop of the Situation Calculus [Levesque et al., 1997,
Reiter, 2001a];

• an unnamed robot control language which is based on the Event Calculus
[Shanahan and Witkowski, 2000]; and

• Flux, which uses the Fluent Calculus as its foundation [Thielscher, 2005a,
Thielscher, 2005d].

In the following we give a brief introduction to these three languages, before taking
a high-level view at their merits and their shortcomings. Then we provide a first
glimpse at the action logic programs presented in this thesis — these are meant to
combine the nice features of the three aforementioned languages.

1.2.1 Golog

Golog provides Algol-inspired constructs for defining agent strategies. Thus in the
basic version it features, e.g., if-then-else conditionals, while loops, and proce-
dures. These programming constructs are read as shorthand for Situation Calculus
formulas — i.e. they are macro-expanded to (sometimes second-order) Situation Cal-
culus formulas. Later on, this second-order logical semantics has been replaced by
a transition semantics: For this the programs themselves must also be encoded as
terms in the resulting Situation Calculus theory.

1.2.2 Event Calculus-based Language

The unnamed robot control language from [Shanahan and Witkowski, 2000] is based
on the idea to directly use a logic programming implementation of an Event Calculus-

6

1.2 Action Programming Languages

based dynamic world model to control the robot. There does not seem to be a
distinction between the world model, and the strategy employed. The language also
refers to epistemic fluents for which no well-understood, logical counterpart has been
developed in the Event Calculus, yet. This, as well as the usage of negation-as-failure
in the logic program complicates the task of giving a declarative semantics to the
language. To be fair the main focus of the work is to show how logic-based high-level
reasoning can be done atop of low-level robot control.

1.2.3 Flux

Flux programs are full constraint logic programs. That is, there is an implementa-
tion (in ECLiPSe Prolog) of a certain fragment of the Fluent Calculus that can be
used to model the dynamic domain. Moreover, an arbitrary constraint logic program
can be used on top of this world model to specify the strategic behavior of an agent.
Because Flux programs may contain arbitrary non-logical features of ECLiPSe Pro-
log their semantics has not been given as a logical semantics, but using the notion
of a computation tree instead [Thielscher, 2005a].

1.2.4 Action Logic Programs

There is one feature that all three aforementioned languages share: They are tied to
a specific action calculus that must be used to model the dynamic domains. (This
claim has to be qualified: There has been substantial research on how to translate,
e.g., Fluent into Situation Calculus.)

Moreover, none of these three languages fully separates the strategy an agent
employs from the world model. Imagine we want to define some kind of measure on
fluents that currently hold in order to guide our strategy — something like saying
”if at least five pawns are located at...”. Neither in Golog nor in the unnamed Event
Calculus-based language can we add the necessary axioms to the underlying action
theory. Hence, the formulas defining this measure have to be already there. In Flux
such auxiliary formulas can be added to the underlying action domain in a natural
way. However, in Flux the strategy programs contain state terms, and thus the
separation between strategy and action domain is again not complete.

Finally, we observe that the three languages are more or less procedural, and
thus none of them has been provided with a straightforward declarative semantics.
Golog is based directly on procedural programming constructs, and has been pro-
vided with both a second-order logical semantics, and a transition semantics. The
unrestricted logic programming paradigm employed by the other two languages has
so far precluded a logical semantics.

With the action logic programs that we are about to present we address these
shortcomings. In particular, action logic programs

7

Chapter 1 Introduction

• are largely independent from a particular action calculus (they use a more
general action calculus that encompasses, e.g., the Event, Fluent, and Situation
Calculus);

• draw a clear distinction between the world dynamics, and the strategy em-
ployed; and

• are a fully declarative logic programming paradigm that is based on the familiar
first order semantics.2

Of the aforementioned three action programming languages the closest relative
of action logic programs is Flux. Indeed, it is only fair to say that action logic
programs are a fully general reconstruction of Flux in classical logic that is moreover
independent from the Fluent Calculus.

1.3 Logic-based Knowledge Representation and Reasoning
about Actions

Almost all the theoretical work in this thesis takes place in the context of classical
first order logic. In particular, action logic programs will be a purely first order
formalism. That is to say we will use first order logic to specify both the dynamic
domain (in an action calculus), and the strategy that is used to achieve a goal in
that dynamic domain.

However, first order logic is far from being the sole logic that has ever been pro-
posed. Let us hence at this point make a digression: In this section we will briefly
outline some of the available logical alternatives. In particular we will give pointers
to our motivation for choosing first order logic as formalism underlying action logic
programs.

Of course, we cannot give a comprehensive treatment of such a broad subject,
and we are very much aware that such a cursory treatment will not be satisfactory.
On the other hand, not mentioning the issue at all does not appear to be satisfac-
tory, either. The reader looking for an overview of the multi-faceted use of logic
in knowledge representation is referred to [Gabbay et al., 1998], or the more recent
[Lifschitz et al., 2007].

1.3.1 First Order Logic

Historically, what is now known as classical first order logic (FOL) originates with
Frege’s famous Begriffsschrift [Frege, 1879]. Frege’s work marks the starting point

2Only theorem 3.3 rests on second order assumptions.

8

1.3 Logic-based Knowledge Representation

of modern logic, introducing the predicate calculus and thus overcoming the limita-
tions of the up to then standard Aristotelian logic. Strictly speaking the predicate
calculus Frege proposed in modern terms is second order — it contains variables that
range over sets made up from elements of the underlying domain of interpretation.
Restricting Frege’s system by allowing variables only to range over single elements
of the domain of interpretation we obtain basically what is now known as classical
first order logic.

This idea of interpreting logical formulas is the second major innovation that
sets modern first order logic apart from Aristotelian logic — this has led to the
development of model theory (cf., e.g., [Chang and Keisler, 1990, Hodges, 1997]).
This method was first used to prove that the parallel postulate in Euclidean geometry
is independent from the other axioms, by giving two different interpretations of the
remaining axioms. This idea of interpreting formulas allows an elegant formulation
of both knowing a proposition φ as well as not knowing it. We know φ holds if it
is true in every interpretation — and we do not know whether φ holds if there are
interpretations that make φ true, as well as interpretations that make φ false.

Using this idea of interpretation, in first order logic predicates and terms are
assigned to relations on, or elements from, some universe of discourse. The idea
may be illustrated by Quine’s dictum “To be is to be the value of a variable”.

A natural question that arises here is: What is the domain of interpretation (the
universe of discourse)? For first order logic the answer is any non-empty set. The
underlying idea is that the notion of logical consequence should depend on logic
alone and not on the structure of the underlying domain. This may be understood
as saying logic has no (particular) ontology — a paraphrase of Putnam’s dictum.
Something follows logically if the reasoning does not depend on particular properties
of the domain we are reasoning about. Or, as Hilbert put it: “One must be able to
say tables, chairs, beer-mugs each time in place of points, lines, planes”.

The domain being an arbitrary non-empty set leads to a second remark: Just
what is any set? First order model theory is usually done in the context of Zermelo-
Fraenkel set theory with the axiom of choice (ZFC), which in turn is a first order
theory. How does this not constitute a vicious circle? The commonly agreed upon
answer is that the notions of “set”, but also “for all”, “and” etc. that are used for
defining the semantics of first order logic are pre-formal. We obviously cannot go
on to provide formal foundations for formal theories forever. Hence formal first
order model theory seems to rest on the assumption that ZFC correctly captures
our intuitions about sets.

A different justification for FOL might be provided by Gödel’s completeness theo-
rem [Gödel, 1930]. This states that in first order logic the semantic, model-theoretic
consequence relation coincides with the syntactic consequence relation, i.e. the con-
sequence relation defined via proof. The proof-theoretic consequence relation that
Gödel used in his proof of the completeness theorem is the modus ponens proof rule,

9

Chapter 1 Introduction

which arguably is very intuitive. By now also many other proof systems for first
order logic have been shown to be complete. What Gödel’s completeness theorem
tells us is that to object against the set-based model-theoretical semantics of first
order logic, is also to object against an arbitrary complete proof system for first
order logic — and vice versa. So, if we have doubts about the semantic consequence
relation, these may be eliminated if we trust the proofs.

1.3.2 Second Order Logic

In second order logic variables range not only over individual elements of the do-
main but also over functions and relations thereon, i.e. over sets. Set variables are
thought to range over all subsets of the domain of interpretation, not only the first
order definable ones — at least in the standard semantics. In the alternative, less
commonly used Henkin semantics set variables range over first order definable sets
only.

This feature makes standard second order logic extremely powerful. For example,
it semantically captures the concept of “a smallest set such that”: It is possible to
enforce a certain cardinality of the domain of interpretation, i.e. second order logic
is categorical. First order logic on the other lacks this power as witnessed by the
Löwenheim-Skolem theorems.

This expressive power of second order logic comes at a price, however: Second
order logic does not admit a sound and complete proof system under the standard
semantics — this is a striking contrast to first order logic. This mismatch is due to
the fact that second order logic lacks a property called compactness: This holds if
a set of formulas (a theory) in a logic is satisfiable if and only if every finite subset
thereof is satisfiable. Compactness ensures that for every theorem of a theory there
is a finite subset of the axioms of the theory that the theorem can be derived from.
Lindströms theorem [Ebbinghaus et al., 1994] assures us that first order logic is the
strongest logic closed under classical negation that enjoys the compactness property.
If we accept the tenet of classical proof theory that a proof is a finite object (that can
be checked in finite time) this means that first order logic is the strongest classical
logic that admits a complete proof system.

Still, attracted by the expressive power, researchers in knowledge representation
have frequently resorted to second order formalisms. For example, second order
logic has been used in the Situation Calculus to characterize semantically the tree
of situations — the common, non-standard first order models are thus eliminated.
Using a non-monotonic logic like circumscription to solve the frame problem also
constitutes a recourse to second order features: Non-monotonic logics are usually
based on the idea of minimizing the extension of certain predicates, and this idea of
a smallest extension is a typical application of second order ideas. As a last example,
in the Fluent Calculus a second order axiom has been used to ensure that in every

10

1.3 Logic-based Knowledge Representation

model of an axiomatization every possible combination of fluents is accounted for.
The question whether using second order logic really is necessary will occasionally
be resurfacing throughout this thesis; but by no means is this thesis an attempt to
give an exhaustive treatment of this delicate subject.

A concise introduction to second order logic can be found in [Leivant, 1994]; ad-
ditional material can also be found in [Andrews, 1986]. Currently probably the
most comprehensive book on the philosophical questions surrounding second order
logic is [Shapiro, 1991], a book that strongly advocates using second order logic for
mathematics.

1.3.3 Intuitionistic Logic

Intuitionistic logic [van Dalen, 1994, Dummett, 1977] — which originates with the
work of Brouwer [Brouwer, 1907] — constitutes the first modern alternative to clas-
sical predicate calculus. It deviates from classical logic in that it rejects the law of
the excluded middle, i.e. intuitionistic logic rejects the idea that for any sentence Ψ
it holds that Ψ ∨ ¬Ψ evaluates to true. Semantically, under the Brouwer-Heyting-
Kolmogorov interpretation the meaning of a sentence is identified with a proof of the
sentence. This idea can nicely be described by borrowing the slogan “The meaning
of a sentence is the method of verification of the sentence” from the logical positivists
of the Vienna Circle.

Without doubt intuitionistic logic constitutes a viable alternative to classical logic
in many respects; however, from the perspective of logic-based knowledge represen-
tation the classical idea of truth in some structure (world model) in some respects
is intuitively more appealing. This is particularly evident in the research area of
reasoning about actions: For example, assume the agent’s world model is given by a
classical logical formula, describing the potentially many different worlds the agent
deems possible. The effects of the agent’s actions can then very naturally be de-
scribed by updating (via set operations) each of the possible worlds individually
[Winslett, 1990]. Expressing similar ideas in intuitionistic logic is not straightfor-
ward.

1.3.4 Sub-structural Logic

Sub-structural logic [Restall, 2000] has become the umbrella term for a number
of logics that are neatly characterized by imposing restrictions on the structural
rules in proof systems for classical logic like, e.g., natural deduction or the sequent
calculus. The three most prominent members of this family are relevance logic,
resource conscious logics and Lambek calculi/categorical grammars.

The latter play an important role in natural language processing in that they
provide non-commutative versions of the logical connectives “and” and “or”. The

11

Chapter 1 Introduction

basic idea can be illustrated by contrasting, e.g., the statements “He swallowed some
pills and got ill” and “He got ill and swallowed some pills”.

Relevance logic aims at overcoming perceived shortcomings of classical, material
implication. For one in classical logic the principle “ex falso quodlibet” holds: Abso-
lutely anything is implied by a contradiction and likewise a logical truth is implied
by absolutely anything. Second, classical logic entails that for arbitrary sentences Φ
and Ψ it holds that (Φ ⊃ Ψ) ∨ (Ψ ⊃ Φ). Statements like “If you like pancakes, then
two plus two equals four” or “If elephants are grey then water is wet or if water is
wet then elephants are grey” illustrate the kind of reasoning relevance logic tries to
avoid. The aim is that implications should have only relevant premises. Relevance
logic has also proven to be very useful for natural languages processing.

Resource Conscious Logics

Research in reasoning about actions has frequently used resource conscious logics.
The most prominent representative of these logics is linear logic, introduced by
Girard in [Girard, 1987]. It extends classical logic in such a way that it becomes
possible to treat propositions as resources that are consumed by proofs. Treating
propositions as resources is particularly interesting from the perspective of reasoning
about actions and change because it constitutes a solution to the frame problem. A
close relative of linear logic is (an extension of) Bibel’s linear connection method,
originally introduced in [Bibel, 1986]. The relationship between these formalisms as
well as their application to planning problems is discussed in [Bibel, 1998].

The idea of treating propositions as resources also figures prominently in the
early history of Fluent Calculus. The original version of Fluent Calculus introduced
in [Hölldobler and Schneeberger, 1990] treats states as multi-sets: The state term
Carries(Coin) ◦ Carries(Coin) expresses that there are two coins being carried. In
Thielscher’s version of the Fluent Calculus [Thielscher, 1999c], however, this term is
provably equal to Carries(Coin) — the state-forming ◦ operator is idempotent, and in
fact may be read as analogous to classical conjunction. The original non-idempotent
◦-operator in turn is best understood as analogous to linear conjunction.

Though attractive with regard to expressivity, sub-structural logics arguably suffer
from an overly complicated model theory: They are typically defined by placing
restrictions on proof theory.

The interested reader will find in the appendix of [Girard, 2001] a pronounced, if
not polemic, articulation of the viewpoint that the model-theoretical semantics of
FOL is not really necessary — and that sub-structural, proof-theoretically defined
logics are fully adequate. For example, it is argued that we only need a model-
theoretic semantics if we want to “interpret Taliban as students”. The same opin-
ionated appendix also features a number of criticisms of non-monotonic logics. We
discuss these logics next.

12

1.3 Logic-based Knowledge Representation

1.3.5 Non-monotonic Logic

Classical logic is monotonic in the sense that if we add an axiom to a set of ax-
ioms the set of theorems never decreases. The family of non-monotonic logics
[Brewka et al., 2008] differs in that by adding axioms we may lose theorems. The
common idea underlying non-monotonic logics is to introduce some means to mini-
mize the extension of certain predicates. Different notions of minimality give rise to
different non-monotonic logics. Instead of treating all models of a formula equally
in non-monotonic logics we prefer some (the minimal) models — hence often the
expression of preferential semantics is used.

The development of non-monotonic logics was mainly motivated by two aims:
For one, artificial intelligence researchers were looking for a way to formalize default
reasoning with exceptions: As a famous example, we might want to express that typ-
ically birds fly. As a second motivation, researchers were hoping that non-monotonic
logic would help them to overcome the frame problem. And as witnessed by, e.g.,
the circumscriptive Event Calculus they eventually succeeded.

In non-monotonic logic two issues arise: For one, the notion of model minimality
makes it hard to express disjunctive information — the difficulty arises from trying
to say at the same time that something might be true, and that, by default, we
assume that everything is false unless we have conclusive evidence to the contrary.
For this issue a number of solutions are available now. The second issue is that
reasoning in non-monotonic logic is typically more expensive than reasoning in clas-
sical logic. This again is due to the preferential semantics, and the second order
features involved. For example, for the full circumscriptive Event Calculus we do
not even know in principle how to compute the logical consequences — all we have
is a fragment for which reasoning can be reduced to first order reasoning.

1.3.6 Modal Logic

Modal logic has extensively been studied with the goal of formalizing modalities:
Examples include possibility/necessity, obligations, or epistemics. A textbook in-
troduction can, e.g., be found in [Blackburn et al., 2001]. The key advancement in
modal logic in the last century was Kripke’s formalization of their semantics via
so-called possible worlds and accessibility relations. A world here may typically be
regarded as a (consistent) set of propositional literals. Different modal logics are
now definable by imposing different conditions on the accessibility relation between
worlds. For example, we might say that we consider some proposition to be pos-
sible if there exists a possible world accessible from the current world where this
proposition indeed is true.

From the perspective of reasoning about action these accessibility relations be-
tween worlds are clearly attractive: An action is simply taking us from the current

13

Chapter 1 Introduction

world state to the next world state. All we have to ensure is that the worlds accessible
via some action accurately reflect the action’s effects. Some early work in this direc-
tion has been conducted by Herzig and colleagues (cf., e.g. [Castilho et al., 1999]).
Recently also a reformulation of the Situation Calculus in modal logic has appeared
— here the worlds are not restricted to propositional logic but first order instead
[Lakemeyer and Levesque, 2004, Lakemeyer and Levesque, 2005].

1.3.7 The Choice for First Order Logic

With this plethora of different logics at our hand, we have chosen to base our research
on first order logic only. This choice was motivated by the following observations:
First, none of the logics proposed so far “gets it right”. That is, up to now there
is no single logic that does not have some shortcoming (at least when applied to
certain problems it was not intended for). Second, first order logic is conceptually
very simple, yet it is very powerful. For this work we adopt the view that this
conceptual simplicity of FOL trumps the (typically) more fine-grained expressivity
of the competing logics. This argument may be viewed as taking an engineering
perspective: Because FOL is conceptually simpler, it is easier to use. Of course, it
has shortcomings. A naive axiomatization of a scenario where you try to shoot a
turkey might not have the intended logical consequences — however, the same holds
of many a non-monotonic logic. We conjecture that, for any logic, it is not hard to
find natural language scenarios that — axiomatized naively — seem to imply that
the logic fails to handle the scenario correctly. On the other hand, we argue that
both the Tarskian semantics and the various FOL proof calculi are intuitive and
simple enough, so that a knowledge engineer can employ FOL to correctly capture
the scenario. A last argument that can be made for directly using first order logic
is that it may be viewed as the “lingua franca” of computer science. This view has
been expounded, e.g., in [Robinson, 2000].

For action logic programs we take first order logic only, and see how far we can
push it. We will see that the proof of theorem 3.3 hinges on the presence of a second
order axiom. We will also see that for some classes of action domains a form of
non-monotonic reasoning may be called for (cf. the discussion at the very end of
section 6.2). But overall action logic programs will show that for most aspects of
modeling the behavior of single agents in dynamic domains classical first order logic
is enough.

1.4 Structure of the Thesis

The rest of this thesis is organized as follows:

• In chapter 2 we formally introduce (constraint) logic programs, action calculi,

14

1.4 Structure of the Thesis

and Description Logics — material that action logic programs are built atop.

• In chapter 3 we introduce the action logic program framework — the main
theoretical contribution of this thesis.

• The chapters 4 and 5 are devoted to presenting our implementation of two
fragments the theoretical framework presented in chapter 3. We will present
one implementation of open world reasoning over essentially propositional do-
mains, and one implementation that is based on the knowledge representation
formalism of Description Logics.

• In chapter 6 we explore the relation of our framework to existing work — it is
here where we will further elaborate on the relation of action logic programs
to existing languages like Golog and Flux.

• Finally, in chapter 7 we conclude.

15

2 Preliminaries

In this chapter we introduce the formal preliminaries of our work. It contains an
introduction to

• the notation used, and pointers to the literature on first order logic in sec-
tion 2.1;

• logic programming in section 2.2;

• Thielscher’s unifying action calculus in section 2.3; and

• Description Logics in section 2.4.

2.1 First Order Logic and Notation

Action Logic Programs are based on many-sorted, classical first order logic with
equality interpreted as identity. We assume the reader is already familiar with it.
A concise summary of the most important results can be found in [Davis, 1993]
while [van Dalen, 1994, Enderton, 1972, Ebbinghaus et al., 1994, Shoenfield, 1967]
give more extensive treatments. We will abbreviate classical first order logic with
equality by the acronym FOL.

On Notation: The logical connectives are ∧,¬, ∀ with ⊃,∨,≡, ∃ treated as the
usual abbreviations. Equality is written as = in infix notation as is the common
abbreviation 6=. Occasionally we will use a version of first order logic with counting
quantifiers; these are written as ≥ n and ≤ n, respectively, with n ∈ N, like for
example in (≥ 1 x)P (x). First order logic with equality and counting quantifiers
is abbreviated FOL≤,≥, while FOL2 denotes first order logic with two variables.
Capital letters are used for predicate and function symbols, while lower case letters
denote variables. Greek letters, e.g., φ, ψ, denote formulas while atoms and literals
are written as, e.g., P (A),¬P (B). Occasionally we let Latin letters, e.g., A,B,H
range over atoms as we will use L for literals — this usage will be clear from the
context. Sequences of variables and (more general) terms are written as ~x and ~t,
respectively. A formula with free variables ~x may be written as φ(~x), and the uni-
versal closure of a formula φ is denoted as (∀)φ. In this thesis formulas with free
variables are to be read as their universal closure unless explicitly stated otherwise.
By (∃!x)φ(x) we abbreviate the FOL formula expressing that there is a unique x

16

2.2 Logic Programming

such that φ(x). The symbols > and ⊥ stand for (arbitrary) tautologies and contra-
dictions, respectively. Sans serif letters, e.g., A, range over sets of formulas. Since
this is established practice we will denote substitutions by Greek letters, too — see
section 2.2.1 below. Sets of numbers are denoted by the usual N,R etc.. As usual by
|= we denote model-theoretic consequence while ` denotes provability. Calligraphic
letters are used for denoting both logics and logical languages. For example, ALC
denotes a basic description logic and L may be used for a particular logical language.
Note that we do not apply these notational conventions to description logics, but
follow the notational conventions of the DL community instead.

2.2 Logic Programming

Logic programming comes in many different flavors. In this thesis only definite logic
programs and their extension to constraint logic programs play a role. For both
we recall the theoretical basics below. Note that the logic programming formalisms
that we introduce below are based on the classical first order semantics — though
many formalisms with a more specialized semantics have also been called logic pro-
gramming.

2.2.1 Definite Logic Programs

Definite logic programs correspond to the Horn fragment of first order logic together
with SLD-resolution. They are computationally complete and form the logically
pure core of the programming language Prolog. The reader looking for an more in
depth introduction is referred to the classic [J.W. Lloyd, 1987] or the more recent
[Apt, 1996]. We assume the reader also knows the basics programming in Prolog —
cf., e.g., [Clocksin and Mellish, 1987] and [O’Keefe, 1990] in addition to the above
references.

Horn Clauses and Substitutions

A first order Horn clause is a universally quantified disjunction of first order literals
(∀)L1 ∨ . . . ∨ Ln, of which at most one is positive. Both definite clauses and goal
clauses are Horn clauses: A definite clause π contains a positive literal whereas a
goal clause γ does not. A definite clause (∀)H ∨ ¬B1 ∨ ¬Bn, where H is the (only)
positive literal, may equivalently be written as an implication (∀)H ⊂ B1∧ . . .∧Bn.
It is common to refer to H as the head atom and to the Bi as the body atoms. A
definite logic program P is a finite set of definite clauses. The declarative semantics
of a program is given by its first order semantics. A query (∃)% is an existentially
quantified conjunction of first order atoms.

17

Chapter 2 Preliminaries

A substitution θ is a finite set of pairs {(x1/t1), . . . , (xn/tn)}, where all the xi
are pairwise distinct variables and each ti is a term different from xi. Given a
definite clause π and a substitution θ, by πθ we denote the definite clause obtained
by substituting every occurrence of variable xi in π by the term ti simultaneously,
for {(xi, ti) ∈ θ | 1 ≤ i ≤ n}. Likewise, for a term t, and a substitution θ =
{(x1/t1), . . . , (xn/tn)} by tθ we denote the term obtained by simultaneously replacing
every occurrence of a variable xi in t by ti. The empty substitution is denoted ε.

The composition θ1θ2 of two substitutions θ1 = {(x1, t1), . . . , (xn, tn)} and θ2 =
{(y1, s1), . . . , (ym, sm)} denotes the substitution that is obtained from the substitu-
tion {(x1, t1θ2), . . . , (xn, tnθ2)}∪ θ2 by deleting any pair (xi, tiθ2) with xi = tiθ2 and
any pair yj , sj for which yj ∈ {x1, . . . , xn}. A substitution θ1 is more general than
a substitution θ2 if there is a substitution θ3 such that θ1θ3 = θ2. A substitution θ
is a unifier of two literals L1, L2 if L1θ and L2θ are syntactically identical. A clause
π′ is a fresh variant of a clause π if it is obtained by uniformly substituting each
variable in π by an hitherto unmentioned variable.

SLD Resolution

The proof calculus SLD-resolution [Hill, 1974, van Emden and Kowalski, 1976] pro-
vides the operational counterpart to the declarative first order semantics of definite
logic programs P.

SLD-resolution is a negative proof calculus. Thus, given a program P and a query
(∃)%, it is established that P |= (∃)% by proving unsatisfiability of P ∪ {¬(∃)%}.
Negating a query (∃)% = (∃)G1 ∧ . . . ∧Gn we obtain the goal clause γ = (∀)¬G1 ∨
. . .∨¬Gn. A state is a pair < γ, θ >, where γ is a goal clause, and θ is a substitution.
A derivation of a query (∃)% is a sequence of states, starting with state < γ, ε >,
where ε is the empty substitution. A derivation is successful if it ends in < ⊥, θ >,
where ⊥ denotes the empty clause, i.e. a contradiction. A successful derivation is
also called refutation. The unifier θ in the last state of a refutation is also referred
to as computed answer substitution. A derived state to which the rule of inference
presented below cannot be applied indicates a failed derivation.

SLD-resolution is defined by the following rule of inference:

< (¬G1 ∨ . . . ∨ ¬Gi ∨ . . . ∨ ¬Gn), θ1 >

< (¬G1 ∨ . . . ∨ ¬B1 ∨ . . . ∨ ¬Bm ∨ . . . ∨ ¬Gn)θ2, θ1θ2 >

where Gi is an atom and (H ⊂ B1∧ . . .∧Bm) is a fresh variant of a clause in P such
that Gi and H unify with most general unifier θ2.1

We restate two well-known results from the literature, establishing soundness and
completeness of SLD-resolution wrt. the declarative semantics.

1For definite clauses a unique most general unifier always exists.

18

2.2 Logic Programming

Theorem 2.1 (Soundness of SLD-resolution). Let P be a definite logic program,
(∃)% be a query, and γ the corresponding goal clause. If there exists a SLD-derivation
starting from < γ, ε > and ending in < ⊥, θ > then P � (∀)%θ.

The completeness result below uses the following notion of a computation rule:

Definition 2.1 (Computation Rule). A computation rule is a function selecting a
literal from a Horn clause to continue the derivation with.

Theorem 2.2 (Completeness of SLD-resolution). Let as before P be a definite logic
program and γ be the negation of the query (∃)%. If P � γθ1, then there exists
a successful SLD-derivation via any computation rule starting with < γ, ε > and
ending in < ⊥, θ2 >. Furthermore, there is a substitution θ3, such that θ1 = θ2θ3.

2.2.2 Constraint Logic Programming

Constraint logic programs are an extension of definite logic programs. They make
available specialized algorithms for the evaluation of some goals, the so called con-
straints. For example there might be linear constraints in a constraint logic program,
that are evaluated using, e.g., the simplex method.

More precisely, constraint logic programming — CLP(X) — is a scheme, that
is to be instantiated with a suitable first order constraint domain axiomatization
X[Jaffar and Lassez, 1987]. In addition to the ordinary atoms of plain logic program-
ming in CLP(X) there are special atoms — the constraints — that are evaluated
against the background constraint theory X. Below we recall the presentation of con-
straint logic programming that can be found in [Frühwirth and Abdennadher, 2003].

In CLP(X) states are pairs <
∨
i=1..n ¬Gi, σ >, where the constraint store σ is

a first order formula. Substitutions are not applied to the goals, but collected as
equality formulas in the constraint store instead.

The proof calculus of CLP(X) consists of the following two rules of inference, one
for the program atoms, and one for the constraints:

• Program Atoms:

< (¬G1 ∨ . . . ∨ ¬Gi ∨ . . . ∨ ¬Gn), σ >
< (¬G1 ∨ . . . ∨

∨
i=1..m ¬Bi ∨ . . . ∨ ¬Gn), σ′ >

where Gi is a program atom and (H ⊂ B1 ∧ . . . ∧ Bm) is a fresh variant of
any clause in the program P such that X � (∃)Gi = H ∧ σ.2 Furthermore the
resulting constraint store σ′ is set to σ ∧Gi = H.

2The equation Gi = H abbreviates equating the respective arguments.

19

Chapter 2 Preliminaries

• Constraint Atoms:

< (¬G1 ∨ . . . ∨ ¬C ∨ . . . ∨ ¬Gn), σ >
< (¬G1 ∨ . . . ∨ ¬Gn), σ′ >

where C is a constraint atom and X � (∀)C ∧ σ ≡ σ′.

For this proof calculus the following soundness and completeness results hold for
program P, constraint theory X, query % and constraint stores σ(i):

Theorem 2.3 (Soundness of CLP(X)). If % has a successful derivation with com-
puted answer σ then P ∪ X � (∀)σ ⊃ %.

Theorem 2.4 (Completeness of CLP(X)). If P ∪ X � (∀)σ ⊃ % and σ is satisfiable
wrt. X, then there are successful derivations for the goal G with computed answers
σ1, . . . , σn such that X � (∀)(σ ⊃ (σ1 ∨ . . . ∨ σn)).

Observe that the answers in CLP(X) are conditional: for an answer
∨
i=1..k σi to

a query we have to check whether X �
∨
i=1..k σi to see whether the query is indeed

entailed.
The proof calculus for CLP(X) provides the operational semantics of constraint

logic programs; their declarative semantics is given by the usual first order semantics.
In the classic work on the semantics of constraint logic programs [Jaffar et al., 1998]
these two semantics are complemented by an algebraic semantics. For this one
specifies an algebra as the domain of computation for X such that the evaluation
of constraints can be done by algebraic operations rather than by logical proofs on
the constraint theory. For our purposes, introducing the logical and operational
semantics suffices.

2.3 Unifying Action Calculus

In this section we recall the essentials of a recently proposed unifying action calculus
(UAC) [Thielscher, 2007]. The unifying action calculus has been introduced with the
stated goal of bundling research efforts in the reasoning about action community.
It has been shown that this calculus abstracts from, and can be instantiated by,
concrete calculi such as the Event, Fluent, or Situation Calculus. It can also be
instantiated by less expressive but computationally more feasible planning languages
such as STRIPS and ADL. This section contains excerpts from [Thielscher, 2007].

20

2.3 Unifying Action Calculus

2.3.1 Formal Basics

Formally, the UAC is based on many-sorted first order logic with equality and the
four sorts time, fluent, object, and action.3 Fluents are reified, and the predi-
cate Holds : fluent×time is used to indicate whether a particular fluent evaluates
to true at a particular time. For axiomatizing action preconditions the predicate
Poss : action × time × time is used. Usually in action calculi the predicate Poss
has only one argument of sort time. UAC’s Poss can be read as “There is a possi-
ble transition from one timepoint via an action to another timepoint”. Having two
arguments of sort time also allows modeling actions with indirect effects or varying
duration. There are only finitely many function symbols into sorts fluent and
action, respectively. For actions and fluents unique name axioms are included by
default.

The UAC abstracts from a particular time structure. Each domain axiomatization
includes an axiomatization of the chosen underlying time structure. For example,
the natural or the real numbers provide the linear time structure of the Event Cal-
culus, while both the Fluent and Situation Calculus are based on the branching time
structure of situations. It is mandatory that the time structure includes a constant
denoting the earliest time point. Furthermore it is assumed that it defines a possibly
partial order on the time structure, denoted by the relation s1 < s2.

2.3.2 Domain Axiomatizations

The following axiomatization of the blocks world illustrates the basic building blocks
of UAC’s action domain axiomatizations. In the well known blocks world a number
of blocks situated on a table can be moved around unless there are other blocks
stacked on top. The goal is to arrange the blocks according to some pattern. The
axiomatization is built on top of the branching time structure of situations:

Example 2.1 (Blocks World Axiomatization). We can move block1 from one location
x to another location y if there is neither another block block2 on top of it, nor a
block block3 blocking location y. This precondition of moving a block is expressed
by the following axiom:

(∀)Poss(Move(block1, x, y), s1, s2) ≡
Holds(On(block1, x), s1) ∧ x 6= y ∧
¬(∃block2)Holds(On(block2, block1), s1) ∧
(¬(∃block3)Holds(On(block3, y), s1) ∨ y = Table) ∧
s2 = Do(Move(block1, x, y), s1).

3By convention variable symbols s, f , x, and a are used for terms of sort time, fluent, object,
and action, respectively.

21

Chapter 2 Preliminaries

If we move a block from location x to location y then the only changes that occur
are, respectively, that the block is no longer located at x, but at y. These effects of
moving a block are axiomatized as follows:

(∀)Poss(Move(block, x, y), s1, s2) ⊃
[(∀f)(f = On(block, y) ∨ (Holds(f, s1) ∧ f 6= On(block, x))) ≡ Holds(f, s2)].

Please note how first order quantification is used in the above axiom to solve the
frame problem.

The following domain constraint expresses the fact that every block is situated at
exactly one location at any given time:

(∀s∃!y)Holds(On(block, y), s).

Finally, suppose that the following axiom describes what is known about the initial
situation:

(∀f)Holds(f, S0) ≡ f = On(Block1,Table) ∨ f = On(Block2,Table).

Together with the unique name axioms for the blocks and the table this axiomati-
zation entails

Holds(On(Block2,Block1),Do(Move(Block2,Table,Block1), S0)).

Formally the different axiom types that are used to formalize a dynamic domain
in the UAC are defined as follows:

Definition 2.2 (UAC Basic Formulas). Let ~s be a sequence of variables of sort time
and A be a function into sort action.

• A state formula φ[~s] in ~s is a first-order formula with free variables ~s where

– for each occurrence of Holds(f, s) we have s ∈ ~s;
– predicate Poss does not occur.

We say a state formula is pure if Holds and equality are the only predicate
symbol used.

• A state property φ is an expression defined as a first order formula without
any occurrence of Poss or Holds, but allowing terms F (~x) of sort fluent to
take the role of atoms. By HOLDS(φ, s) we denote the state formula obtained
from φ by replacing every occurrence of a fluent f by Holds(f, s).

• A domain constraint is a state formula in s:

(∀s)δ[s].

22

2.3 Unifying Action Calculus

• A precondition axiom is of the form

(∀)Poss(A(~x), s1, s2) ≡ πA[s1],

where πA[s1] is a state formula in s1 with free variables among s1, s2, ~x.

• An effect axiom is of the form

Poss(A(~x), s1, s2) ⊃ η1[s1, s2] ∨ . . . ∨ ηk[s1, s2].

The ηi[s1, s2] denote different cases; each of these sub-formulas is of the form

(∃~yi)(φi[s1] ∧ (∀f)[δ+
i [s1, s2] ⊃ Holds(f, s2)]

∧ (∀f)[δ−i [s1, s2] ⊃ ¬Holds(f, s2)])

where φi[s1] is a state formula in s1 with free variables among s1, ~x, ~yi,4 and
both δ+

i [s1, s2] and δ−i [s1, s2] are state formulas in s1, s2 with free variables
among f, s1, s2, ~x, ~yi.

• An initial state axiom is a state formula in the least element of sort time.

Before we can turn to the definition of an action domain axiomatization we still
need to define what the foundational axioms of the UAC are:

Definition 2.3 (Foundational Axioms). Foundational axioms Daux contain an ax-
iomatization of the (possibly partially) ordered underlying time structure that must
feature a constant denoting the earliest time point. By default, unique name axioms
for fluents and actions are also included. In addition Daux may also contain domain-
dependent additional axioms, e.g., an axiomatization of arithmetic or finite domain
constraints.

Now we can define action domain axiomatizations in the UAC as follows:

Definition 2.4 (Domain Axiomatizations). An action domain axiomatization D
consists of the sets DPoss and DEffects of precondition and effect axioms, respectively,
each containing one axiom for every action, along with a finite set of domain con-
straints Ddc, a finite set of initial state axioms DInit and foundational axioms Daux.

2.3.3 Concrete Action Calculi in UAC

In this section we recall how specific action calculi are represented in the unifying
action calculus. In particular this is done for the big three action calculi, the Event,
Fluent, and Situation Calculus. We will not present such definitions for planning
languages, since these usually can be represented in one of the big three action
calculi.

4The purpose of sub-formula φi[s1] is to define possible restrictions for case i to apply.

23

Chapter 2 Preliminaries

Fluent Calculus

We start by recalling how Fluent Calculus domains are represented in the unifying
action calculus.

Definition 2.5 (Fluent Calculus Domain). A Fluent Calculus domain axiomatiza-
tion in the UAC is subject to the following conditions:

• Every precondition axiom is of the form

(∀)Poss(A(~x), s1, s2) ≡ πA[s1] ∧ s2 = Do(A(~x), s1),

where πA[s1] is a state formula in s1 with free variables among s1, ~x; and

• Every effect axiom is of the form

Poss(A(~x), s1, s2) ⊃

(
∨
k

)(∃~yk)(Φk[s1]∧

(∀f)[(
∨
i

f = fki ∨ (Holds(f, s1) ∧
∧
j

f 6= gkj)) ⊃ Holds(f, s2)]∧

(∀f)[(
∨
j

f = gkj ∨ (¬Holds(f, s1) ∧
∧
i

f 6= fki)) ⊃ ¬Holds(f, s2)])

where the fki and gkj are fluent terms with variables among ~x, ~yk — the positive
and negative effect, respectively —, and the Φk are state formulas in s1 with
free variables among s, ~x, ~y. Positive and negative action effects in an effect
axiom with k cases are subject to a natural consistency condition, namely, we
require that

(∀)
∧
i

∧
j

fki 6= gkj

holds for all k. Effect axioms can equivalently be written as

Poss(A(~x), s1, s2) ⊃∨
k

(∃~yk)(Φk[s1] ∧ (∀f)[(
∨
i

f = fki ∨ (Holds(f, s1) ∧
∧
j

f 6= gkj))

≡ Holds(f, s2)]).

• Foundational axioms Daux contain an axiomatization of situations (the under-
lying time structure).

The initial state axiom and the domain constraints are not subject to any special
conditions.

24

2.3 Unifying Action Calculus

Assume an action A(~x) is applicable in a situation s1. The foundational theorem
of the Fluent Calculus [Thielscher, 2005d] then establishes that a fluent holds in the
situation Do(A(~x), s1) if and only if

• it held at situation s1 and was not a negative effect of A, or

• it is a positive effect of A,

given that a single state update equation applies. The foundational theorem shows
that the Fluent Calculus solves the frame problem. The following theorem is the
analogous result for Fluent Calculus domains in the unifying action calculus:

Theorem 2.5 (Fluent Calculus Foundational Theorem). Assume given a Fluent
Calculus domain D, a Fluent Calculus effect axiom and a model I for D such that

• �I Poss(A(~x), s1, s2), and

• �I (∃~yk)Φk[s1], for some k.

Then
�I (∀f)[

∨
i

f = fki ∨Holds(f, s1) ∧
∧
j

f 6= gkj ≡ Holds(f, s2)].

Situation Calculus

For solving the frame problem in the Situation Calculus using classical first order
logic so-called successor state axioms have been introduced in [Reiter, 1991]. The
general form of these axioms, one for each fluent F (~u), is

Poss(a, s) ⊃ [Holds(F (~u),Do(a, s)) ≡ Γ+
F [s] ∨Holds(F (~u), s) ∧ ¬Γ−F [s]]

where Γ+
F and Γ−F describe the conditions on a, s, ~u under which fluent F (~u) is, re-

spectively, a positive or a negative effect. Reiter’s successor state axioms do not allow
to model non-deterministic actions; in [Thielscher, 2007] they have been generalized
to non-deterministic effects.

Precondition axioms in the Situation Calculus are defined exactly as in the Fluent
Calculus (cf. definition 2.5). Standard deterministic successor state axioms in turn
can be represented in the UAC as

Poss(a, s1, s2) ⊃ [Holds(F (~u), s2) ≡ Γ+
F [s1] ∨Holds(F (~u), s) ∧ ¬Γ−F [s1]](∗).

This form does not comply with the definition of an effect axiom (cf. definition 2.2) in
the unifying action calculus, though. But it has been shown how both deterministic
and non-deterministic successor state axioms can equivalently be compiled to effect

25

Chapter 2 Preliminaries

axioms in the unifying action calculus in [Thielscher, 2007], furthering the work
begun in [Schiffel and Thielscher, 2006].

Thus we can safely regard successor state axioms of the form (∗) as shorthand
for effect axioms. Assuming that the successor state axioms of a Situation Calculus
domain axiomatization are represented as UAC effect axioms, too, will especially
prove to be convenient when we later on consider properties of domain axiomati-
zations in general. But, strictly speaking, it is not necessary: we could likewise
have loosened the definition of an effect axiom in the UAC, at the cost of a case
distinction, complicating the presentation.

Event Calculus

The Event Calculus is the major proponent of an action calculus based upon linear
time. It has originally been introduced as a logic program by Kowalski and Sergot
in [Kowalski and Sergot, 1986]. It has later been reformulated in classical predicate
logic together with circumscription by Shanahan; the classic book on the Event
Calculus now is his [Shanahan, 1997]. A contemporary book on the many different
aspects and uses of the Event Calculus is [Mueller, 2006].

A version of the Event Calculus that is well suited for solving planning problems
has been presented in [Shanahan, 2000]; the robot programming language presented
in [Shanahan and Witkowski, 2000] is based on this version, too. In this version the
natural numbers N serve as the underlying linear time structure. This version of
the Event Calculus is quite restrictive: e.g., one cannot ask whether there exists a
plan achieving a goal at some time point; one can only ask whether the goal can be
achieved at a specific time point.

Below we formally introduce our own variant of the Event Calculus for planning
from [Shanahan, 2000]; we then show how it can be accommodated in the unifying
action calculus. Our calculus is more general than the one from [Shanahan, 2000] in
that it allows to ask whether there exists a plan achieving a goal at some time point;
and in that it allows more general conditions in effect axioms, etc.: We allow first
order fluent formulas instead of only ground formulas. Note that our version of the
Event Calculus is also a restriction of the Event Calculus from [Shanahan, 2000], be-
cause we only allow non-concurrent action domains: Non-concurrency of the action
domains is one of the intuitions that will be underlying Action Logic Programs.

Basics of Event Calculus In Shanahan’s Event Calculus the frame problem is
solved using a combination of foundational axioms and circumscription. Circum-
scription is the oldest non-monotonic logic, originally introduced by McCarthy in
[McCarthy, 1980]. As such it allows to minimize the extension of a predicate —
this operation of minimization is called circumscribing a predicate. Circumscribing
predicates P1, . . . , Pn wrt. a formula ψ is denoted CIRC(ψ;P1, . . . , Pn). We do not

26

2.3 Unifying Action Calculus

need the full definitions of circumscription here; for the interested reader the definite
treatment of circumscription to date is [Lifschitz, 1994].

Definition 2.6 (Event Calculus Foundational Axioms). In order to solve the funda-
mental frame problem the Event Calculus features the foundational axioms EC given
below: 5

Holds(f, s) ⊂ InitP (f) ∧ ¬Clipped(0, f, s)
Holds(f, s2) ⊂

Happens(a, s1) ∧ Initiates(a, f, s1) ∧ s1 < s2 ∧ ¬Clipped(s1, f, s2)
Clipped(s1, f, s3) ≡

(∃a, s2)[Happens(a, s2) ∧ s1 ≤ s2 ∧ s2 < s3∧
[Terminates(a, f, s2) ∨ Releases(a, f, s2)]]

¬Holds(f, s2) ⊂
Happens(a, s1) ∧ Terminates(a, f, s1) ∧ s1 < s2 ∧ ¬Declipped(s1, f, s2)

¬Holds(f, s) ⊂ InitN (f) ∧ ¬Declipped(0, f, s)
Declipped(s1, f, s3) ≡

(∃a, s2)[Happens(a, s2) ∧ s1 ≤ s2 ∧ s2 < s3∧
[Initiates(a, f, s2) ∨ Releases(a, f, s2)]]

Put in words, a fluent f holds if it held initially and has not been changed since;
or if it has been initiated by some event (and not been changed since). A fluent that
holds can be changed by an event that terminates it (sets it to false) or by an event
that releases it from the frame assumption. The axioms that specify when a fluent
does not hold are symmetric.

Definition 2.7 (Event Calculus Basic Formula Types). For the specification of
concrete action domains the Event Calculus features a number of formula types. In
our version of the Event Calculus we include the following:

• Conditions φ are used by all the basic formula types: they are first order for-
mulas that contain only Holds(f, s) literals, for fluent f and time point s.
Moreover the time point variable s is the same in each literal (the condition is
uniform in s). They can be seen as a restricted form of the state formulas of
the UAC.

• Positive and negative effect axioms are used to specify the positive and negative
effects of events; they are of the following form:

(∀s)φ(s) ⊃ Initiates(a, f, s), and
(∀s)φ(s) ⊃ Terminates(a, f, s),

5We denote events by terms a, as in action.

27

Chapter 2 Preliminaries

for ground event a, ground fluent f , and time point variable s. Observe that
events in the Event Calculus are instantaneous: the effects are initiated (ter-
minated) immediately. Only by the foundational axioms EC do the effects hold
(not hold) at the next time point.

• Release axioms are used to specify those fluents that are exempt from the frame
assumption due to an event occurrence. They are of the form:

(∀s)φ(s) ⊃ Releases(a, f, s),

for ground event a, ground fluent f , and time point variable s.

• State constraints are conditions that have to be fulfilled at every timepoint.
Thus they are of the form

(∀s)φ(s)

Planning Domains in the Event Calculus With the help of these basic formula
types we can now define what an Event Calculus planning domain looks like:

Definition 2.8 (Event Calculus Planning Domains). A domain axiomatization for
expressing planning tasks is specified in the Event Calculus with the help of the
following formulas:

• The initial situation φ0 is a Boolean combination of atoms of the form InitP (f)
or InitN (f), for ground fluent f , meaning that initially the fluent does hold (P
- positive) or does not hold (N - negative).

• The planning goal γ is of the form (∃s)φ(s), where is φ is a Boolean combi-
nation of Holds(f, s) literals, for ground fluent f and time point variable s,
uniform in s.

• A totally ordered narrative δ is a conjunction of ground atoms of the form
Happens(a, s), for event a and time point s, such that every s occurs exactly
once in the conjunction. Intuitively, a narrative constitutes a plan.

• A domain description DEC contains a finite number of positive and negative
effect axioms, and release axioms. Additionally, a conjunction of state con-
straints might be included. Finally, unique name axioms for fluents, actions,
and objects are included.

Domain descriptions DEC are subject to a consistency condition: for every pair con-
sisting of one positive effect axiom φ1 ⊃ Initiates(a, f, s) and one negative effect
axiom φ2 ⊃ Terminates(a, f, s) it holds that DEC � ¬(φ1 ∧ φ2). The same holds for
every pair consisting of one effect axiom and one release axiom.

28

2.3 Unifying Action Calculus

Finally, with the help of the above definitions we can specify what it means to
solve a planning problem in the Event Calculus:

Definition 2.9 (Planning in the Event Calculus). Assum given an action domain
description DEC, an initial situation φ0, and a planning goal γ. Then planning
consists of the abductive reasoning task of finding a narrative δ such that the narrative
together with the domain description, and the initial situation entails the goal :

CIRC(
∧

DEC; Initiates,Terminates,Releases) ∧ CIRC(φ0 ∧ δ; Happens) ∧ EC � γ.

Representing Event Calculus in the UAC We now show how Event Calculus plan-
ning domains can be represented in the unifying action calculus. To this end we first
recall how to compute circumscription [Lifschitz, 1994].

Definition 2.10 (Computing Circumscription). Let ψ be a formula of the form
P (~x) ⊂ φ(~x), such that the predicate symbol P does not occur in φ. Then, for the
basic circumscription of P wrt. ψ (CIRC(ψ;P)), we have that

CIRC(ψ;P)
def
= (∀)P (~x) ≡ φ(~x).

Circumscribing predicates P1, . . . , Pn in parallel is defined as follows: Let every Pi be
positive in ψ, i.e. ψ is equivalent to a formula ψ′ using only the connectives ∧,∨,¬,
such that each Pi occurs in ψ′ in the scope of an even number of negation signs.
Then we have that

CIRC(ψ;P1, . . . , Pn)
def
=

∧
i

CIRC(ψ;Pi).

Without loss of generality we stipulate that the effect and release axioms in Event
Calculus planning domains are represented in their equivalent first order form ob-
tained using definition 2.10. We stipulate the same for any inferred narratives,
whether they constitute partial or complete plans. We are now in a position to
define a mapping from Event Calculus planning domains to action domains in the
unifying action calculus.

Definition 2.11 (Translating Event Calculus Domains into the UAC). Assume
given an Event Calculus domain description DEC, and an initial situation φ0. These
are mapped to the unifying action calculus as follows:

• We introduce a UAC signature containing corresponding symbols for the events,
fluents, and objects of the Event Calculus domain.

• The initial situation φ0 is mapped to a initial state axiom φ(0), by replacing
every InitP (f) by Holds(f, 0) and every InitN (f) by ¬Holds(f, 0).

29

Chapter 2 Preliminaries

• The state constraint (if any) is taken as it is as a domain constraint.

• The planning goal γ is also taken as it is.

• Foundational axioms Daux contain a first order axiomatization of the natural
numbers.

• For every event A(~x) in the domain we introduce a precondition axiom

(∀)Poss(A(~x), s1, s2) ≡ Holds(Occurs(A(~x)), s1) ∧ s2 = s1 + 1.

• We include a domain constraint

(∀)(Holds(Occurs(a1), s) ∧Holds(Occurs(a2), s)) ⊃ a1 = a2,

stipulating that only a single event can occur at any one time.

• For some ground event a, let D+
EC be the set of all the respective positive ef-

fect axioms, D−EC the set of negative effect axioms, and D?
EC the set of release

axioms. Further set DEff
EC = D+

EC ∪ D−EC ∪ D?
EC. Let S be some subset of DEff

EC .
Set

– S+ = { g | (φ ≡ Initiates(a, g, s)) ∈ S};
– S− = { g | (φ ≡ Terminates(a, g, s)) ∈ S}; and
– S? = { g | (φ ≡ Releases(a, g, s)) ∈ S}.

These are the fluents that are potentially initiated, terminated, and released,
respectively, by the subset S of effect and release axioms. Further set

– CondS = { φ(s) | (φ(s) ≡ φ) ∈ S}; and
– CondS̄ = { φ(s) | (φ(s) ≡ φ) ∈ DEff

EC \ S}.

The first of these sets contains those conditions for effects from DEff
EC that are

contained in S; the second contains those conditions that are not contained in
S. Finally, define the following effect axiom in the unifying action calculus:

Poss(a, s1, s2) ⊃∨
S⊆DEff

EC

∧
CondS

φ(s1) ∧
∧

CondS̄

¬φ(s1)∧

(∀f)[(
∧
gi∈S?

f 6= gi) ⊃

((
∨

gj∈S+

f = gj ∨Holds(f, s1)) ∧ ¬
∨

gk∈S−

f = gk) ≡ Holds(f, s2)]

30

2.3 Unifying Action Calculus

The effect axioms obtained in this manner for each ground event A(~t) in the
Event Calculus planning domain can then be combined in a single UAC effect
axiom for the parametric action A(~x).

Please note that the effect axioms defined above do not adhere strictly to the
definition of an effect axiom in the UAC (cf. definition 2.2). This deviation is
necessary, however, if we want to express that some fluents are exempt from the
frame assumption, i.e. there are occluded fluents. Using the same trick it is possible
to exclude fluents from the frame assumption also in Fluent and Situation Calculus.

We have defined a mapping from Event Calculus planning domains to domain
axiomatizations D in the UAC. It remains to show that these two formulations admit
the same solutions. To this end define a totally ordered narrative in the UAC exactly
as in the Event Calculus — cf. definition 2.7 — only using Holds(Occurs(a), s) atoms,
instead of Happens(a, s) atoms.

Proposition 2.1 (Correctness of the Translation). Let an Event Calculus planning
domain DEC with goal γ be mapped to a UAC domain axiomatization D. There
exists a narrative δEC solving the Event Calculus planning problem if and only if
there exists a narrative δUAC such that D ∪ δUAC � γ.

Please note that the version of the Event Calculus that we have defined does not
provide for event preconditions, exactly like the Event Calculus for planning pre-
sented in [Shanahan, 2000]. This omission is due to the fact that for not completely
specified initial situations the minimization of Happens may lead to unintuitive re-
sults [Miller and Shanahan, 2002]. Please also note that extending our version of
the Event Calculus to include event preconditions wrt. completely specified initial
situations poses no technical difficulties.

2.3.4 Modularity of Domain Axiomatizations

In this section we recall the notion of modularity of domain axiomatizations. This
notion underlies our own implementation work discussed in chapter 4 and 5 below.

The problem of modularity of domain axiomatizations arises from the fact that
axiomatizations of action domains combine different categories of formulas which
serve different purposes [Herzig and Varzinczak, 2007]. Domain constraints describe
static properties which hold in all states; precondition axioms define the conditions
for actions to be applicable; and effect axioms define the consequences of actions. As
a uniform logical theory, however, a domain axiomatization may easily give rise to
dependencies among the different kinds of axioms: Effect formulas can entail implicit
preconditions, domain constraints can entail implicit effects, etc. Implementations
like Golog or Flux, on the other hand, rely on the assumption that dependencies
like these do not exist, i.e. that the domain axiomatization is modular. The reason

31

Chapter 2 Preliminaries

is that, for the sake of efficiency, the implementations use domain axiomatizations
in a modular fashion. Agents use the domain constraints only when they initialize
their world model, they check the applicability of an action merely against the
precondition axioms, and they update their world model entirely on the basis of the
effect axioms. Agent programs would be much less efficient if the entire domain
theory had to be taken into account for each specific reasoning task.

In [Thielscher, 2007] conditions for modularity have been presented against which
a domain axiomatization can be checked. As the main result, there it has been
proven that the class of sequential and ramification-free domain axiomatizations
(cf. definition 3.8) are guaranteed to be free of dependencies if they satisfy these
conditions. Our own implementations are based on fragments of the Fluent Calculus
in the UAC only. Hence here we recall only the material relevant for modularity in
the Fluent Calculus. Modularity in the Fluent Calculus is easier to check because
the domain axiomatizations are always sequential and ramification-free.

We next recall the definition of implicit domain constraints, preconditions, and
effects. To this end, we introduce the following notation for a given action A(~x): In
a domain axiomatization with precondition axioms DPoss, by DPossA we denote the
one precondition axiom which is for A(~x), with πA[s] being its right hand side as
usual. Likewise, if DEffects are the effect axioms, then by DEffectsA we denote the one
for action A(~x).

Definition 2.12. Consider a domain axiomatization Σ consisting of domain con-
straints Ddc, precondition axioms DPoss, and effect axioms DEffects.

1. The domain axiomatization is free of implicit domain constraints if for every
state formula δ[t],

Σ |= δ[t]

implies Ddc |= δ[t].

2. The domain axiomatization is free of implicit preconditions if for every ac-
tion A(~x) and state formula π[s],

Σ |= Poss(A(~x), s, t) ⊃ π[s]

implies Ddc ∪ DPossA |= Poss(A(~x), s, t) ⊃ π[s].

3. The domain axiomatization is free of implicit effects if for every action A(~x)
and state formula ε[t], if

Σ |= Poss(A(~x), s, t) ⊃ ε[t]

then Ddc[S]∪DPossA[S]∪DEffectsA[S, T] |= Poss(A(~x), S, T) ⊃ ε[T], where S, T
are constants of sort Time.

32

2.3 Unifying Action Calculus

Put in words, an implicit domain constraint is a domain constraint which is en-
tailed by the entire domain axiomatization but which cannot be derived from the
given domain constraints Ddc alone. An implicit precondition is entailed by the en-
tire domain axiomatization but does not follow from the precondition axioms alone
in a state that satisfies the domain constraints. The rationale behind this definition
is the following: Given a state that satisfies the domain constraints Ddc, the precon-
dition axiom for an action A alone should suffice to entail all executability conditions
for this action. Finally, an implicit effect follows from the entire domain axiomatiza-
tion but not from an effect axiom alone in a state that satisfies the preconditions of
an action and the domain constraints. The rationale behind this definition is this:
Given a state that satisfies both the domain constraints Ddc and the preconditions
of an action A, the instantiated effect axiom for this action alone should suffice to
infer everything that can be concluded of the resulting state.

The following two conditions are enough to guarantee that a Fluent Calculus
domain axiomatization is free of implicit dependencies. Informally speaking, the
first condition, (4.1), essentially says that for every state at some time S which is
consistent with the domain constraints and in which an action A(~x) is applicable,
the condition Φi[S] for at least one case i in the effect axiom for A holds. Condition
(4.2) requires that any possible update leads to a state that satisfies the domain
constraints.

Definition 2.13. Let S, T be constants of sort Time. A domain axiomatization
with domain constraints Ddc, precondition axioms DPoss, and effect axioms DEffects is
called modular if the following holds for every action A(~x) with effect axiom (2.2):
There exists i = 1, . . . , k such that

|= Ddc[S] ∧ πA[S] ∧ (∃~yi)Φi[S], (2.1)

and for every such i,

|= Ddc[S] ∧ πA[S] ∧ ηi[S, T] ⊃ Ddc[T] (2.2)

We next recall one of the main results from [Thielscher, 2007], which says that
modular domain axiomatizations are free of implicit domain constraints, precondi-
tions, and effects.

Theorem 2.6. If a sequential and ramification-free domain axiomatization is mod-
ular then it is also free of implicit domain constraints, preconditions, and effects.

2.3.5 Reasoning with Action Theories

In the chapters 4 and 5 we will discuss issues related to the practical implementation
of the theoretical ALP framework. Let us already here draw a distinction between

33

Chapter 2 Preliminaries

two fundamentally different ways of implementing reasoning with action theories:
An implementation may be based on progression, or it may be based on regression.

The progression approach is very similar to that of traditional relational database
systems. We view the initial state formula DInit as some kind of database. Next
we view the effects of an action as a database update — we compute an up-
dated database. Finally, queried state properties are evaluated against the current
database just like any database query. The action programming language Flux is a
prominent example of an implementation based on the idea of progression.

In the regression approach, on the other hand, we never update the initial database.
Instead it only remembers the sequence of executed actions. For answering a query
that is posed after executing a sequence of actions the following approach is taken:
The query is iteratively rewritten by taking the effects of the previously executed
actions into account. Finally, the completely rewritten query is evaluated against the
initial database. The most prominent example of an action programming language
based on regression is Golog.

Both implementations described in this thesis are based on the progression ap-
proach.

2.4 Description Logics

Description Logics (DLs) are a recently very successful branch of logic-based knowl-
edge representation formalisms. They (usually) go considerably beyond the expres-
sivity of propositional logic, while at the same time they avoid the undecidability of
full first order logic. Although the complexity of the reasoning problems in DLs can
appear to be daunting the available highly optimized reasoners6 have empirically
proven to be sufficiently efficient for applications.

In this section we introduce those aspects of Description Logics that underpin our
implementation of a fragment of the ALP framework discussed in chapter 5. In a
first subsection we introduce the basics of static DL-based knowledge representation.
In a second subsection we briefly recall the theoretical insights on dynamic DL-based
knowledge representation from [Liu et al., 2006] that underlie our implementation
work. The definitive textbook on Description Logics is [Baader et al., 2003].

The Description Logics considered in this thesis do not incorporate expressive fea-
tures that go beyond first order logic: Thus they can all be considered as fragments
of first order logic. However, the DL community has established independent no-
tational conventions that we will adhere to, even if they are at odds with our own
notational conventions laid out in section 2.1. The reader interested in the minu-
tiae of the relation between Description Logics and first order logic is referred to
[Borgida, 1996].

6A list of DL reasoners is available at http://www.cs.man.ac.uk/~sattler/reasoners.html.

34

http://www.cs.man.ac.uk/~sattler/reasoners.html

2.4 Description Logics

2.4.1 Basic Description Logics

In DLs, knowledge is represented with the help of concepts (unary predicates) and
roles (binary predicates). Complex concepts and roles are inductively defined start-
ing with a set NC of concept names, a set NR of role names, and a set NI of individual
names. The expressiveness of a DL is determined by the set of available constructors
to build concepts and roles. The concept and role constructors of the DLs ALCO@,
ALCIO@, ALCO+ and ALCO+ that form the base of our work on the implementa-
tion of ABox update discussed in chapter 5 are shown in Table 2.1, where C,D are
concepts, q, r are roles, and a, b are individual names. The DL that allows only for
negation, conjunction, disjunction, and universal and existential restrictions is called
ALC. By adding nominals O, we obtain ALCO, which is extended to ALCO@ by
the @-constructor from hybrid logic [Areces and de Rijke, 2001], and to ALCO+ by
the Boolean constructors on roles and the nominal role [Liu et al., 2006].7 Adding
inverse roles to ALCO@ or ALCO+ we obtain ALCIO@ and ALCIO+. We will use
> (⊥) to denote arbitrary tautological (unsatisfiable) concepts and roles. By sub(φ)
we denote the set of all subconcepts and subroles of a concept or role φ, respectively,
where, e.g., the subconcepts of a complex concept are all the concept names occuring
in it. By Obj(A) we denote all the individuals that occur in A.

Name Syntax Semantics

negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

universal restriction ∀rC {x | ∀y.((x, y) ∈ rI → y ∈ CI)}
existential restriction ∃rC {x | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}
nominal {a} {aI}
@ constructor @aC ∆I if aI ∈ CI , and ∅ otherwise

inverse role r− (rI)−1

role negation ¬r (∆I ×∆I) \ rI

role conjunction q u r qI ∩ rI

role disjunction q t r qI ∪ rI

nominal role {(a, b)} {(aI , bI)}

Table 2.1: Syntax and semantics of ALCO@ and ALCO+.

The semantics of concepts and roles is given via interpretations I = (∆I , ·I). The

7Our version of ALCO+ is equivalent to the one found in [Liu et al., 2006], but admits a more
streamlined presentation.

35

Chapter 2 Preliminaries

domain ∆I is a non-empty set and the interpretation function ·I maps each concept
name A ∈ NC to a subset AI of ∆I , each role name r ∈ NR to a binary relation rI on
∆I , and each individual name a ∈ NI to an individual aI ∈ ∆I . The interpretation
function ·I is inductively extended to complex concepts and roles as shown in Table
2.1.

An ABox assertion is of the form C(a), r(a, b), or ¬r(a, b) with r a role, C a
concept and a, b individual names. A classical ABox, or an ABox for short, is a
finite conjunction of ABox assertions. A Boolean ABox is a Boolean combination
of ABox assertions. For convenience we will also sometimes represent classical and
Boolean ABoxes as finite sets of assertions by breaking the top-level conjunctions.
An interpretation I is a model of an assertion C(a) if aI ∈ CI . I is a model
of an assertion r(a, b) (resp. ¬r(a, b)) if (aI , bI) ∈ rI (resp. (aI , bI) /∈ rI). A
model of a (Boolean) ABox is defined in the obvious way. We use M(A) to denote
the set of models of a Boolean ABox A. A (Boolean) ABox A is consistent if
M(A) 6= ∅. Two (Boolean) ABoxes A and A′ are equivalent, denoted by A ≡ A′,
if M(A) = M(A′). An assertion α is entailed by a Boolean ABox A, written as
A |= α, if M(A) ⊆M({α}). Classical ALCO@ ABoxes can equivalently be compiled
to Boolean ALCO ABoxes (and vice versa) — the translation in the first direction is
exponential, in the other direction it is linear [Liu et al., 2006]. Consistency checking
and entailment for classical ABoxes are standard inference problems and supported
by all DL reasoners, while, to the best of our knowledge, no state of the art reasoner
directly supports these inferences for Boolean ABoxes. Reasoning in ALCO+ and
ALCIO+ is NExpTime complete [Tobies, 2001]; for ALCO@ it is PSpace complete
[Areces et al., 1999], and for ALCIO@ we only know that already reasoning with
ALCIO ABoxes is ExpTime complete [Schaerf, 1994].

Another very useful feature of DLs are TBoxes that allow us to introduce ab-
breviations for complex concepts. A TBox T is a finite set of concept definitions
of the form A ≡ C, where A is a concept name (called a defined concept) and C
is a complex concept. A TBox is acyclic if it does not contain multiple or cyclic
definitions.

A DL Knowledge Base is a pair K = (T ,A), with TBox T and ABox A; the
semantics of Knowledge Bases is defined in the obvious way. Reasoning wrt. an
acyclic TBox in a knowledge base can always be reduced to reasoning wrt. the
empty TBox by unfolding the definitions [Baader et al., 2003].

The following, more general notion of a TBox is also sometimes used: A TBox is
a set of concept inclusions, where a concept inclusion is an expression C v D with
first order reading (∀x)C(x) ⊃ D(x). A concept definition C ≡ D can be seen as
two concept inclusions, C v D and D v C. In this thesis we use the previous, less
general definition of a TBox; at one point we will discuss issues related to concept
inclusions, though.

Later on, it will be useful to have a notion of the size of an ABox at our disposal.

36

2.4 Description Logics

We choose the following definition:

Definition 2.14 (ABox Size). The size |A| of an ABox is Σα∈A|α|, the sum of the
sizes of the respective assertions. For Boolean assertions α(∨,∧)β we define the size
as 1+ |α|+ |β|. The size |C(a)| of a concept assertion is 1+ |C|, and the size |r(a, b)|
of a role assertion is 2 + |r|. The size of a concept is

• 1, for concept names and nominals;

• 1 + |C|+ |D| for C uD,C tD;

• 1 + |r|+ |C| for ∃r.C, ∀r.C; and

• 1 + |C| for ¬C.

The size of a roles is defined analogously, with the convention that a nominal role
is of size 2. Finally, the size of TBox elements C v D or C ≡ D is defined as
1 + |C|+ |D|.

2.4.2 ABox Update

An ABox can be used to represent knowledge about the state of some world. An
update contains information on changes that have taken place in that world. In
[Liu et al., 2006], a method for updating DL ABoxes has been developed, and in
[Drescher and Thielscher, 2007] we have shown that this notion of an update con-
forms with the semantics employed by Fluent and Situation Calculus.

This thesis is accompanied by a sister thesis [Liu, 2009] that studies ABox updates
in depth. Here we only recall those aspects of ABox update in detail that under-
lie our own implementation. However, we evaluate our implementation techniques
for the updates introduced below by comparing them to an implementation of the
more sophisticated, so-called projective updates of [Liu, 2009] in section 5.2.2 be-
low. Hence we conclude this section by an cursory overview of the projective ABox
updates introduced in [Liu, 2009].

Updates

Intuitively, an update U describes the changes that have happened in the world.
The ABox updates considered in [Liu et al., 2006] are conditional, and they work on
the DLs between ALCO@ and ALCQIO@, or ALCO+ and ALCQIO+, respectively.
Since our prototypical implementation supports only unconditional updates in the
DLs ALCO@ and ALCIO@ (or ALCO+ and ALCIO+, respectively) we start by re-
calling only the respective material. Our implementation does not support counting
quantifiers (in the guise of the qualified number restrictions Q) because they lead to
updated ABoxes that are hard to manage in practice.

37

Chapter 2 Preliminaries

The following definition of an unconditional update as a consistent ABox U says
for every literal δ(~t) ∈ U that this literal holds after the change of the world state:

Definition 2.15 (Update). An update U is a finite consistent set of DL literals,
i.e. each δ(~t) ∈ U is of the form A(a), ¬A(a), r(a, b), or ¬r(a, b) with A a concept
name, r a role name, and a, b individual names.

The formal semantics of updates given in [Liu et al., 2006] defines, for every in-
terpretation I, a successor interpretation IU obtained by minimally changing this
model according to the update. In particular, there is no difference in the interpreta-
tion of individual names between the original and the updated interpretation. Given
an ABox A, all its models are considered to be possible current states of the world.
The goals is then to find an updated ABox A∗U that has exactly the successor of the
models ofA as its models, i.e., A∗U must be such that M(A∗U) = {IU | I ∈M(A)}.
In general, such an updated ABox need not exists. This semantics of ABox updates
is based on the possible models approach of Winslett [Winslett, 1988]. It should be
noted here that for the deterministic updates under consideration Winslett semantics
is uncontroversial, even though it does not extend to updates with non-deterministic
or indirect effects (cf., e.g., [Doherty et al., 1998]) — these latter effects are also
called ramifications.

Admitting the inverse role constructor in updates does not add expressivity, but
complicates the presentation. Hence, we refrain from doing so. But, for presenting
the construction of updated ABoxes, it will be helpful to assume a certain normal
form on ABoxes: Without loss of generality we assume that the inverse role con-
structor does not occur in role assertions. Likewise we assume that it does not occur
in nested form in the quantifier restrictions ∃r.C and ∀r.C — e.g., we assume that
∃r−−.C is replaced by ∃r.C.

Updated ABoxes

We continue by recapitulating the construction of updated ABoxes.
The minimal DLs that contain both the basic DL ALC and are closed under ABox

updates are ALCO@ and Boolean ALCO. For ALCO@ and ALCIO@, updated
ABoxes are exponential in the size of the original ABox and the update. The DLs
ALCO+ and ALCIO+ admit updated ABoxes that are exponential in the size of
the update, but polynomial in the size of the original ABox.

We continue by introducing additional notation: A simple ABox D is called a
diagram for U if it is a maximal consistent subset of LU , where LU = {ψ,¬ψ | ψ ∈ U}
is the set of literals over U . Intuitively, a diagram gives a complete description of
the part of a model of A that is “relevant” for the update U . Let D be the set of
all diagrams for U and consider for D ∈ D the set DU := {ψ | ¬ψ ∈ D and ψ ∈ U}.
Thus, DU contains exactly those assertions from U that do not hold in D. Now the

38

2.4 Description Logics

AU = (A t
F
¬A(a)∈U{a})u

¬(
F

A(a)∈U{a})

rU = (r t
F
¬r(a,b)∈U{(a, b)})u

¬(
F

r(a,b)∈U{(a, b)})

(r−)U = (rU)−

{a}U = {a} {(a, b)}U = {(a, b)}
(¬C)U = ¬CU (¬r)U = ¬rU
(C uD)U = CU uDU (r u q)U = rU u qU
(C tD)U = CU tDU (r t q)U = rU t qU
(∃r.C)U = ∃rU .CU (∀r.C)U = ∀rU .CU

Figure 2.1: Constructing CU and rU for ALCO+ and ALCIO+

(@iC)U = @iC
U

(∃r.C)U = (
d

a∈Obj(U) ¬{a} u ∃r.C
U)t

∃r.(
d

a∈Obj(U) ¬{a} u C
U)tF

a,b∈Obj(U),r(a,b)6∈U ({a} u ∃r.({b} u CU))tF
¬r(a,b)∈U ({a} u@bC

U)

(∀r.C)U = (
F

a∈Obj(U){a} t ∀r.C
U)u

∀r.(
F

a∈Obj(U){a} t C
U)ud

a,b∈Obj(U),r(a,b)6∈U (¬{a} t ∀r.(¬{b} t CU))ud
¬r(a,b)∈U (¬{a} t@bC

U)

Figure 2.2: Constructing CU for ALCO@ and ALCIO@

updated ABox A′ is defined as the following disjunction, containing one disjunct for
every diagram D for U :

Proposition 2.2 (Updated ABox for ALCO+ and ALCIO+). Let the updated con-
cept (role) αX be obtained by the construction defined in Figure 2.1. Let the ABox
A′ be defined as

A′ =
∨
D∈D

∧
ADU ∪ DU ∪ (D \ D¬U), (2.3)

where the ABox AX is defined as AX = {αX (~t) | α(~t) ∈ A}, and the setD¬U as
D¬U = {¬ϕ | ϕ ∈ DU}. Then A ∗ U ≡ A′.

The DLs ALCO@ and ALCIO@ lack role operators, and, hence, the construction
of the updated quantifier concepts is complicated — it is depicted in Figure 2.2, as
is the construction for the @-constructor. For the Boolean concept constructors and
nominals the construction is as in ALCO+. In Figure 2.2, we omit the construction

39

Chapter 2 Preliminaries

of existential and universal restrictions that use the inverse role constructor. Let
us emphasize that in Figure 2.2 the symbol r denotes a role name, and hence not
an inverse role. Then recall that we assume that the inverse role constructor only
occurs non-nestedly, and in direct combination with a role name: The respective
constructions for quantifier restrictions with inverse roles can be obtained from those
depicted by appropriately swapping individual names.

Proposition 2.3 (Updated ABox for ALCO@ and ALCIO@). In this setting the
ABox AX is defined as

AX = {CX (a) | C(a) ∈ A} ∪ {r(a, b) | r(a, b) ∈ A ∧ ¬r(a, b) /∈ X}∪
{¬r(a, b) | ¬r(a, b) ∈ A ∧ r(a, b) /∈ X}.

Let A′ be as defined in (2.3). Then A ∗ U ≡ A′.

To see how the construction of updated ABoxes works consider the following
example:

Example 2.2 (Updated ABox). Let the ABox A = {A(a)} be updated with U =
{¬A(a)}. Following Propositions 2.2 and 2.3 we obtain the (highly redundant)
updated ABox

{(A(a) ∧ ¬A(a)) ∨ ((A t {a})(a) ∧ ¬A(a))},

which can be simplified to {¬A(a)}. Intuitively, there is one disjunct (A ∪ U) for
the case that the update already held before the update, and one disjunct (AU ∪U)
for the case that its negation did.

Let us provide some intuition for why the updated ABoxes in ALCO@ (and its
extensions) are exponential in the update and the original ABox, whereas in ALCO+

they are exponential in the update only: In ALCO+, due to the presence of Boolean
and nominal concept and role constructors, we can use exactly the same update
techniques as for role literals for role and concept literals in the update. In ALCO@,
because of the absence of role constructors, for role literals in the update we have
to use a different update construction than for concept literals. In fact, if updates
in ALCO@ contain no role literals then the updated ABoxes are exponential in the
update only [Liu et al., 2006]. The exponential blowup caused by role assertions
in the updated stems from the duplication of the concept CU when updating the
quantifier restrictions ∃r.C and ∀r.C as witnessed by the construction in figure 2.2.
An important result from [Liu et al., 2006] is that in the case of ABoxes iteratively
updated with a sequence of updates the exponential blowups do not add up.

Conditional Updates

In [Liu et al., 2006] it has also been shown how the construction of updated ABoxes
can be extended to conditional updates. Here we recall the respective definitions

40

2.4 Description Logics

that we need to prove our result on a UAC semantics for ABox update in section
5.1 below.

A conditional updated is defined as a finite set of pairs φ/ψ to be read as follows:
For every model I of the original ABox, the effect specified by the literal ψ mate-
rializes in the updated interpretation I ′ if and only if the assertion φ is satisfied by
I. Formally, this semantics of update is defined as follows:

Definition 2.16 (Conditional Interpretation Update). Let U be a conditional up-
date and I, I ′ interpretations such that |I|I = |I|I′ and I and I ′ agree on the
interpretation of individual names. Then I ′ is the result of updating I with U , writ-
ten I =⇒U I ′, if the following holds for all concept names C ∈ NC and role names
R ∈ NR:

CI
′

= (CI ∪ { II | ϕ/C(I) ∈ U ∧ I � ϕ})
\ { II | ϕ/¬C(I) ∈ U ∧ I � ϕ}and

RI
′

= (RI ∪ { (II1 , I
I
2) | ϕ/R(I1, I2) ∈ U ∧ I � ϕ})

\ { (II1 , I
I
2) | ϕ/¬R(I1, I2) ∈ U ∧ I � ϕ}.

Let in the following M(A) denote the set of all models of an ABox A. Then a
conditionally updated ABox is defined as follows:

Definition 2.17 (Conditionally Updated ABox). For an ABox A and a conditional
update U the updated ABox A′ is defined model-theoretically such that:

M(A′) = { I ′ | I ∈ M(A) ∧ I =⇒U I ′}.

The formal definitions for unconditional interpretation and ABox updates are
obtained as the respective special cases.

In chapter 5 below we will give an action calculus semantics for conditional ABox
update based on the above definitions. Our prototypical implementation of ABox up-
date also discussed in chapter 5 below does not cover conditional updates, though.
This choice is motivated by the observation that it is already difficult to control
the non-determinism present in unconditional ABox updates. Hence, here we re-
frain from recapitulating the construction of conditionally updated ABoxes from
[Liu et al., 2006].

ABox Update and (Non-)Unique Names

Let us conclude this introduction by some remarks on ABox update and the unique
name assumption. In principle, ABox update as introduced above works both with
and without it. However, the original and the updated interpretation have to agree
on the interpretation of individual names (cf. definition 2.16). Now, if the input
ABox A and the update U entail different (dis-)equalities between individual names

41

Chapter 2 Preliminaries

this can lead to problems. For example, the input ABox A = {{i}(j)} cannot be
updated to a consistent ABox with the update U = {C(i),¬C(j)}.

In order to overcome this issue we propose to parametrize ABox update by a set
EQ of (dis-)equalities between individual names (this set EQ need not be maximal).
Then, in a next step, we stipulate that no ABox or (possibly conditional) update
may entail a (dis-)equality between individual names that is not already contained
in EQ. Adopting the unique name assumption is a particular simple instance of this
approach, resulting in a maximal set of dis-equalities EQ.

Observe that this issue is closely related to the modularity of action theories as
introduced in section 2.3.4 above.

ABox Update in the Presence of TBoxes

If the ABox A is augmented by a acyclic terminology T we take that to mean that
the TBox holds at all time-points, i.e. we interpret the TBox as a domain constraint.
If we reconsider the construction of updated ABoxes we see that we have to place
the following restrictions on the usage of defined concepts in ABoxes and conditional
updates:

• Defined concepts in the ABox are assumed be expanded to primitive concepts
— otherwise ABox update would give wrong results.

• Defined concepts must not be used in the effect ψ of a conditional update φ/ψ
— otherwise effects would not be limited to literals, and ABox update would
not work.

• Defined concepts may freely be used in the condition φ of a conditional update
φ/ψ.

Logical, Approximate, and Projective Updates

In the accompanying sister thesis [Liu, 2009] by Hongkai Liu the ABox update prob-
lem has been studied in much more detail. Here, we briefly recall some results from
that thesis that are relevant for this thesis.

In the terminology of [Liu, 2009] the updates recapitulated above are logical up-
dates. Another type of update studied in [Liu, 2009] are the so-called projective
updates. More precisely, [Liu, 2009] introduces three types of update ABoxes:

• Logical updates, that have exactly one updated model for each model of the
original ABox.

• Approximate updates, that prove the same things as logical updates, but do
not have the same models.

42

2.4 Description Logics

• Projective updates, that extend the signature of the original ABox, but prove
the same things as logical updates if projected to the original signature.

Very roughly, the idea underlying projective updates is

• to first introduce temporalized concept and role names — e.g., A1 is used to
denote the state of the concept A after the first update; and

• then to use these temporalized concept and role names in a knowledge base
K consisting of TBox and ABox that together describe the current state of the
world.

The most important result wrt. projective updates from [Liu, 2009] is that the knowl-
edge base K is polynomial in both the input ABox and the update, in striking
contrast to the logical updates introduced above. However, their more complicated
construction makes them less amenable to optimization techniques in the implemen-
tation as we will further discuss in section 5.2.2 below.

43

3 Action Logic Programs

The purpose of action logic programs (ALPs) is to define heuristics and strategies
for solving fully general planning problems on top of action domain axiomatizations
D. A distinguishing feature of ALPs is their independence of the specific repre-
sentation formalism used to axiomatize the underlying action domain. Thus ALPs
can be combined with a variety of different action calculi. To demonstrate this, we
base ALPs on action domains formulated in the recently proposed unifying action
calculus [Thielscher, 2007].

ALPs are definite logic programs augmented with two special predicates, one —
written do — for executing an action and one — written ? — for testing whether a
state property currently holds. By state property we mean a combination of fluents
formed by the usual first order logical connectives as defined in definition 2.2. These
two special predicates are evaluated wrt. the background action domain D. Prior to
giving the formal definition of ALPs, let us introduce them via some small examples:

Example 3.1 (Action Logic Program). In the classic planning domain of the blocks
world the following ALP intuitively encodes a strategy for placing every block directly
on the table:

strategy :- ?(forall(X,(on(X,table) or X=table))).
strategy :- do(move(Block,X,table)), strategy.

The first clause describes the goal : Everything but the table is located directly on
the table. The second clause says that our strategy consists of first moving some
block to the table, and then to continue searching. The query ?- strategy. asks
whether the strategy achieves the goal wrt. the background action domain D that de-
fines action preconditions and effects.
The general formulation of planning problems without heuristics as ALPs is as fol-
lows:

strategy :- ?(goal).
strategy :- do(A), strategy.

As is apparent in the examples, ALPs do not contain an explicit notion of time.
What is more, they do not by themselves admit a meaningful logical reading. Con-
sider the rule strategy :- do(A), strategy. from example 3.1: In a classical
logical reading this is just a tautology.

44

3.1 Syntax of Action Logic Programs

Therefore, the semantics of ALPs is given by macro-expanding them to tempo-
ralized definite programs by adding one or two arguments of sort time to every
program literal, denoting the (possibly identical) start and end of the time interval
in which the literal holds. This method of macro-expansion is illustrated by exam-
ple 3.2. Observe that the special atom ?/1 is expanded to HOLDS, and that the
special atom do/1 is expanded to Poss.

Example 3.2 (Macro-Expanded ALP). Let P be the program from example 3.1.
Macro-expansion yields the following formulas P:

(∀)Strategy(s, s) ⊂ HOLDS((∀x)On(x,Table) ∨ x = Table), s)
(∀)Strategy(s1, s3) ⊂ Poss(Move(block, x,Table), s1, s2) ∧ Strategy(s2, s3)

The query ?- strategy. is answered by proving that (∃s)Strategy(S0, s) is logically
entailed by P together with D, a background axiomatization of the blocks world, e.g.,
the one given in example 2.1.

The intuition for the programmer is that the rules in an ALP P are sequences of
literals where the ordering of the sequence determines the temporal order. These
rules are expanded to a set P of classical Horn clauses. For a visible distinction,
we typeset unexpanded ALPs in Prolog syntax and use first order syntax for their
expansions.

3.1 Syntax of Action Logic Programs

The syntax of ALPs is based on the language of the underlying action domain which
we assume to be a sorted logic language including fluents, actions, and objects.

Definition 3.1 (Syntax of ALPs). The syntax of ALPs over action domains D is
defined as follows:

• The signature of a program P includes terms corresponding to the terms of sort
object, action and fluent of D, and also function symbols corresponding to
the predicates of the action domain D with the exception of the predicates Poss
and Holds.1 Additionally it contains “program-only” predicates (obligatory)
and terms (optional).

• If p is an n-ary relation symbol from the program signature and T1,..,Tn are
terms then p(T1,...,Tn) is a program atom.

• do(A) is a special atom, where A is an action term.
1All these terms are needed for a term-encoding of state properties.

45

Chapter 3 Action Logic Programs

• ?(Phi) is a special atom, where Phi is a state property.2

• Rules, programs, and queries are then defined as is usual for pure Prolog pro-
grams — only that rule heads must not be special atoms.

Although ALPs are many-sorted, in the following we will abstract from this situ-
ation, assuming that programs and queries are always correctly sorted. We assume
that for a programmer it is easy to determine the appropriate sorts for terms.

Next we formally define the macro-expansion of an ALP P to its temporalization
P. The expansion uses two expressions that are defined in the underlying action
theory: The predicate Poss(a, s, t), which means that action a is possible starting
at time s and ending at time t; and the macro HOLDS(φ, s), meaning that state
property φ is true at time s. Both have formally been introduced in definition 2.2.

Definition 3.2 (Macro-Expansion of ALPs). For an ALP rule H :- B1, ..., Bn.,
where n ≥ 0, let s1, . . . , sn+1 be variables of sort time from the action domain D.

• For i=1,...,n , if Bi is of the form

– p(T1,...,Tm), expand it to P (t1, . . . , tm, si, si+1).
– do(A), expand it to Poss(a, si, si+1).
– ?(Phi), expand it to HOLDS(φ, si) and let si+1 = si.

• The head atom H = p(T1,...,Tm) is expanded to P (t1, . . . , tm, s1, sn+1).

• Finally, we replace :- by logical implication ⊂ and ’,’ by logical conjunction
∧ and take the universal closure of the resulting clause.

Queries Q1,...,Qn are expanded exactly like rules, only that

• the constant S0 — denoting the earliest time-point in D — takes the place of
s1;

• we take the existential closure of the resulting clause.

It is crucial to observe that only by treating the macro HOLDS(φ, s) as atomic in
an expanded program P the latter can indeed be viewed as a set of first order Horn
clauses. By expanding do/1 to Poss we stipulate that actions can only be executed
if the underlying action theory entails that the action is executable. The reader is
invited to have another look at example 3.2 to see how macro-expansion turns a set
of ALP rules into a set of classical first order Horn clauses.

2State properties are term-encoded, e.g., or(on(block2,block1),on(block1,table)).

46

3.2 Semantics of Action Logic Programs

3.2 Semantics of Action Logic Programs

One objective in the design of ALPs was to obtain a simple and intuitive declarative
semantics. The semantics of ALPs is given by their macro-expansion — a set of first
order formulas — together with a first order axiomatization of the action domain.
Thus the declarative semantics of ALPs is the usual first order semantics.

3.3 Proof Theory

In this section we introduce two proof calculi for expanded ALPs. These calculi
provide the operational semantics of ALPs. Roughly speaking, one of the calculi
addresses the general case, while the other is tailored for background theories that
enjoy a witness property.

For both proof calculi we stipulate that the background action theory extend
the unique name assumption also to terms of sort Object. This requirement is
motivated by the fact that otherwise in general we have to perform equational unifi-
cation between program atoms, blurring the clean separation between program and
background theory:

Example 3.3 (Unique Names for Objects). Assume the action theory entails both
Holds(F (B), S0) and A = B. Consider an ALP that contains only the fact p(b).,
along with the query ?- ?(f(a)), p(a).. Assume that after the derivation step
for HOLDS(F (A), S0) we want to apply the standard logic programming derivation
rule to the derivation state < ¬P (A), θ >: The atoms P (A) and P (B) can only
be unified modulo an equational theory, something which is beyond standard logic
programming.

Let us continue by highlighting the problems that can arise if program atoms and
special atoms share variables of sort object. It is clear that—for a query %—, if
there is a substitution θ such that D ∪ P |= (∀)%θ then D ∪ P |= (∃)%. However, the
converse is not true in general. The problems stem from two sources, namely logical
disjunction and existential quantification:

Example 3.4 (Disjunction and Existential Quantification). In the blocks world we
might be facing the following state of affairs: We know that there are some blocks
on the table, and that one of Block1 or Block2 is among them; i.e. we have

DInit = {Holds(On(Block1,Table), S0) ∨Holds(On(Block2,Table), S0)}.

Now for the query (∃)% = (∃x)HOLDS(On(x,Table), S0) there is no substitution θ
such that D |= (∀)%θ.

47

Chapter 3 Action Logic Programs

Next assume we have the even weaker

DInit = {(∃x)Holds(On(x,Table), S0)}.

Again, for the query (∃x)HOLDS(On(x,Table), S0), no suitable substitution exists.

The completeness result for classical logic programming crucially hinges on this
converse, namely that whenever P |= (∃)% for program P and query % then there is
a substitution θ such that P |= (∀)%θ. Given that in general the converse does not
holds for ALPs in general we cannot give a complete operational semantics via plain
SLD-resolution.

In the next section we identify conditions on action domains that make the use
of plain SLD-resolution possible and present the resulting proof calculus. In the
subsequent section we present a complete proof calculus for the general case.

3.3.1 Elementary Case — LP(D)

A first order theory X is Henkin (or has the witness property) iff. for every sen-
tence of the form (∃x)ϕ(x) where we have that X � (∃x)ϕ(x) then there also is
a constant C such that X � ϕ(x)[x/C] [Enderton, 1972]. As witnessed by, e.g.,
(∃x)Holds(On(x,Table), S0), neither of the two domain axiomatizations from exam-
ple 3.4 exhibits this property. We define a background theory to be query complete
if it is Henkin with regard to all atoms that can occur in ALPs as queries against
the background theory:

Definition 3.3 (Query-Completeness). A background action domain axiomatization
D is query-complete if and only if, for γ being HOLDS(φ, s) or Poss(a, s1, s2), it
holds that D � (∃)γ implies that there exists a substitution θ such that D � (∀)γθ.

In what we call the elementary case we only admit query-complete background
theories. Observe however, that in general it is unfortunately not even decidable
whether a given action domain D is query-complete. For this we would have to
establish whether an arbitrary first order theory (the action domain) is equivalent
to a set of Horn clauses.

The proof calculus for the elementary case can now easily be adapted from plain
SLD-resolution: for action domain D, expanded ALP P, and query (∃)%, we prove
that D ∪ P |= (∃)% by proving D ∪ P ∪ {(∀)¬%} unsatisfiable. The negation of a
query (∃)G1∧ . . .∧Gn is a universally quantified negative clause (∀)¬G1∨ . . .∨¬Gn.
The Gi range over all goals, the special atoms that are evaluated against D will
be denoted by C. The notions of state, derivation, computed answer substitution
are the usual notions from definite logic programs; cf. section 2.2.1. The inference
steps D � HOLDS(φ, s) and D � Poss(a, s, s′) are treated as atomic, assuming the
existence of a sound and complete reasoner on D.

48

3.3 Proof Theory

Definition 3.4 (Proof Calculus — Elementary Case). The proof calculus is given
by the two rules of inference, one for normal program atoms and one for the special
atoms. In particular we have:

• Program Atoms:

< (¬G1 ∨ . . . ∨ ¬Gi ∨ . . . ∨ ¬Gn), θ1 >

< (¬G1 ∨ . . . ∨
∨
j=1..m ¬Bj ∨ . . . ∨ ¬Gn)θ2, θ1θ2 >

where Gi is a program atom and (H ⊂ B1 ∧ . . .∧Bm) is a fresh variant of any
clause in P such that Gi and H unify with most general unifier θ2.

• Special Atoms:

< (¬G1 ∨ . . . ∨ ¬C ∨ . . . ∨ ¬Gn), θ1 >

< (¬G1 ∨ . . . ∨ ¬Gn)θ2, θ1θ2 >

where D � (∀)Cθ2 with substitution θ2 on variables in the special atom C.3

For expanded action logic program P, background domain axiomatization D and
query (∃)%, the following soundness result holds (cf. also theorem 2.1):

Proposition 3.1 (Soundness). If there exists a successful derivation starting from
< ¬(∃)%, ε > and ending in < ⊥, θ > then P ∪ D � (∀)%θ.

Likewise we obtain the following completeness result, analogous to theorem 2.2
for plain SLD-resolution:

Proposition 3.2 (Completeness). If P ∪ D � (∀)%θ1, then there exists a successful
derivation via any computation rule in our proof calculus starting with < ¬(∃)%, ε >
and ending in < ⊥, θ2 >. Furthermore, there is a substitution θ3, such that %θ1 =
%θ2θ3.

We prove proposition 3.2 by adapting Stärk’s proof of the completeness of plain
SLD-resolution [Stärk, 1990]. We start by introducing our variant of Stärk’s auxil-
iary concept of an implication tree.

Definition 3.5 (Implication Tree). A finite tree with atoms as nodes is an implica-
tion tree wrt. D ∪ P if for all nodes V :

• there is an atom H — i.e. a fact — in P and a substitution θ, such that
V = Hθ and V has no children, or

3Observe that, by query-completeness of D, if D � ∃C then there exists a suitable substitution θ2.

49

Chapter 3 Action Logic Programs

• there is a literal ¬C occurring in a clause from P, where C is a special atom,
and a substitution θ such that V = Cθ and D � Cθ and V has no children, or

• there is a clause H ⊂ B1 ∧ . . . ∧ Bm in P (1 ≤ m) and a unifier θ, such that
V = Hθ and B1θ, . . . , Bmθ are exactly the children of V .

Lemma 3.1. Let (∃)G be an atom and D∪P � (∃)G. Then there exists a substitution
θ such that (∀)Gθ has an implication tree wrt. D ∪ P.

Proof. For special atoms this holds by the definition of query-complete theories. The
rest of Stärk’s proof of this lemma goes through unchanged.a

Stärk’s actual completeness proof based on this lemma does not require any mod-
ification.

Given the independence from the computation rule, we adopt the standard left-
most rule from Prolog. This ensures that the first argument of sort time of any atom
will be instantiated prior to evaluation, whereas the second one will be thereafter.

Observe that the proof calculus for the elementary case can only be used to solve
unconditional planning problems, where“unconditional”means that there always ex-
ists a single sequence of actions achieving the goal, and not a disjunction of sequences
of actions.

It is also worth pointing out that our notion of query-completeness is orthogonal
to the following more common notion of completeness: A first order theory is called
complete iff. for every sentence ϕ either ϕ or ¬ϕ is in the theory.

Example 3.5 (Completeness vs. Query-Completeness). For example, if in our
blocks world example 3.4 we do not include any information whatsoever concerning
the location of blocks, the resulting theory is query-complete but not complete.

On the other hand, the following theory is complete but not query-complete: For
the sake of the argument, assume our action domain does not contain actions or
fluents. Let there be a single predicate P , and a single constant A. We axiomatize
that there are only two things, one is denoted by A and the other is an unnamed
object y such that P (y):

(∃x)(∃y)x 6= y ∧ (∀z)(z = x ∨ z = y) ∧ x = A ∧ ¬P (A) ∧ P (y)

This complete theory entails ∃xP (x); but there is not a suitable substitution θ such
that ∀P (y)θ is entailed, and, hence, this theory is not query-complete.

Query-complete action domains cannot, however, represent disjunctive or purely
existential information concerning terms of sort object — this lack of expressivity
is their very purpose. But arguably one of the strong-points of general action calculi
is that this kind of information can naturally be represented. Next we move to this
more interesting setting.

50

3.3 Proof Theory

3.3.2 General Case — CLP(D)

We address the problems illustrated by example 3.4 by moving to the richer frame-
work of constraint logic programming [Jaffar and Lassez, 1987]. By using this frame-
work we will be able to define a sound and complete proof calculus that can cope
with disjunctive and merely existential information.

Constraint logic programming — CLP(X) — constitutes a family of languages,
parametrized by a first order constraint domain axiomatization X. In addition to
the ordinary atoms of plain logic programming in CLP(X) there are special atoms
— the constraints — that are evaluated against the background constraint theory
X. A concise summary of the framework is contained in section 2.2.2.

We instantiate CLP(X) to CLP(D) — constraint logic programming over action
domains D — taking as constraint atoms C the special atoms Poss(a, s1, s2) and
HOLDS(φ, s).

Disjunctive Substitutions

As illustrated by example 3.4, in the case of non-query-complete domains there need
not be unique most general substitutions — in the example we do not know which
of the two blocks is on the table. However, we have the disjunctive information that
one of the two blocks is on the table — something that leads us to resorting to the
notion of (most general) disjunctive substitutions, formally defined as follows:

Definition 3.6 (Disjunctive Substitution). A disjunctive substitution is a finite set
of substitutions Θ = {θ1, . . . , θn}. Applying the disjunctive substitution Θ to a clause
ϕ results in the disjunction

∨
i=1..n ϕθi. Given two disjunctive substitutions Θ1,Θ2

their composition Θ1Θ2 is defined as {θiθj | θi ∈ Θ1 and θj ∈ Θ2}. A disjunctive
substitution Θ1 is more general than a disjunctive substitution Θ2 if for every θi ∈ Θ1

there exist θj ∈ Θ2 and θ such that θiθ = θj.

To every disjunctive substitution Θ there corresponds a formula in disjunctive
normal form consisting only of equality atoms. With a little abuse of notation we
will denote this formula as Θ, too; e.g., we treat {{x→ Block1}, {x→ Block2}} and
x = Block1 ∨ x = Block2 both as the disjunctive answer for example 3.4.

General proof calculi that can compute most general disjunctive answers for ar-
bitrary first order theories are, e.g., full resolution with the help of answer liter-
als [Green, 1969] or restart model elimination [Baumgartner et al., 1997] — with
the caveat of differentiating between terms of sort object and auxiliary Skolem
functions.

51

Chapter 3 Action Logic Programs

The General Proof Calculus

In CLP(X), the derivation rule for the constraint atoms C is based on the logical
equivalence (wrt. X) of C ∧ σ and σ′, where σ is the constraint store prior to rule
application, and σ′ the resulting constraint store. More precisely, it is based on the
formula X � (C ∧σ) ≡ σ′. In our case σ′ can be obtained by exploiting the following
two logical equivalences:

• If there is a substitution Θ such that D � (∀)
∨
θ∈ΘCθ then we can exploit

that
D � (C ∧ σ) ≡ ((C ∧Θ) ∧ σ). (3.1)

• Otherwise we use the weaker fact that

D � C ∧ σ ≡ C ∧ σ. (3.2)

For the sake of efficiency the CLP(X) framework is usually augmented by “Solve”-
transitions [Frühwirth and Abdennadher, 2003]. These replace states in a derivation
by equivalent simpler ones, foremost by rewriting the constraint store. For example,
applying (non-disjunctive) substitutions is a “Solve”-transition, where, e.g., the state
< ¬P (x), x = 1 > is rewritten to the equivalent < ¬P (1),> >. Applying disjunctive
substitutions is not as straightforward:

Example 3.6. Consider the query ?- ?(on(X,table)), p(X). on top of the dis-
junctive action domain D from example 3.4. Further assume that the ALP con-
tains the clause p(X) :- ?(on(X,table))., chosen for the sake of illustration. The
derivation starts with state

< ¬HOLDS(On(x,Table), S0) ∨ ¬P (x, S0),> > .

After deriving HOLDS(On(x,Table), S0) — using 3.1 — we obtain the state

< ¬P (x, S0), (HOLDS(On(x,Table), S0) ∧Θ) >,

where Θ is the formula x = Block1 ∨ x = Block2. Next, by applying the substitution
Θ to P (x, S0), we obtain

< ¬P (Block1, S0) ∨ ¬P (Block2, S0), HOLDS(On(x,Table), S0) ∧Θ >,

which reduces to

< ¬HOLDS(On(Block1,Table), S0) ∨ ¬HOLDS(On(Block2,Table), S0),
HOLDS(On(x,Table), S0) ∧Θ > .

52

3.3 Proof Theory

But now we cannot proceed by querying whether

D ∪ P � HOLDS(On(Block1,Table), S0)

or
D ∪ P � HOLDS(On(Block2,Table), S0).

However, it is obvious that the query

D ∪ P � HOLDS(On(Block1,Table), S0) ∨HOLDS(On(Block2,Table), S0),

admits a successful derivation. But, for simplicity, it would be nice to obtain a
proof calculus that operates on single literals. In the example this can be achieved
by first splitting the state into a disjunction of substates, one for each of the simple
substitutions θ1, θ2 ∈ Θ:

< ¬P (Block1, S0), HOLDS(On(Block1,Table), S0) >
∨̇ < ¬P (Block2, S0), HOLDS(On(Block2,Table), S0) > .

Considering, e.g., the first disjunct we observe that still

D 2 HOLDS(On(Block1,Table), S0);

if, however, we augment the action domain by the corresponding case, we are suc-
cessful :

D ∪ {HOLDS(On(Block1,Table), S0)} � HOLDS(On(Block1,Table), S0).

Generalizing this idea, in our proof calculus we employ reasoning by cases, when-
ever we have obtained a disjunctive substitution Θ = {θ1, . . . , θn}: We split the
current substates of the derivation into a disjunction of substates, one for each θi,
and extend the simple substates from pairs to triples, adding an additional argument
ζ for recording the assumed case. Then in each substate < Negative Clause, σ, ζ >
special atoms are evaluated against the action domain augmented by the correspond-
ing cases: D ∪ {ζ}.

It is crucial to observe that the disjunction of all the newly introduced substates
on one level of the derivation tree is equivalent to the original state. In particular
the disjunction of all the domain axiomatizations D′ augmented by the respective
cases ζ is equivalent to the original D.

A state now is a disjunction of (simple) substates < Negative Clause, σ, ζ >, and
the symbol used for denoting disjunctions of substates is ∨̇. A derivation of the
query % starts with the simple state < ¬%,>,> >. A derivation is successful if it
is ending in

∨̇
i=1..n < ⊥, σi, ζi >. The formula

∨
σi is the computed answer. We

will define our proof calculus to operate on individual literals in single substates.

53

Chapter 3 Action Logic Programs

Any derived substate that is different from < ⊥, σi, ζi > and to which none of the
reduction rules can be applied indicates a failed derivation.

Formally, the proof calculus is given by the rules of inference depicted in figure 3.1.
We omit the straightforward rule of inference for program atoms.

Substitution Rule:

< (¬G1 ∨ . . . ∨ ¬C ∨ . . . ∨ ¬Gn), σ, ζ >

<
∨̇
i=1..k < (¬G1 ∨ . . . ∨ ¬Gn), σ ∧ C ∧ θi, ζ ∧ C ∧ θi >

where D ∪ {ζ} � (∀)
∨
θi∈Θ Cθi with most general disjunctive substitution Θ

Constraint Rule:

< (¬G1 ∨ . . . ∨ ¬C ∨ . . . ∨ ¬Gn), σ, ζ >
< (¬G1 ∨ . . . ∨ ¬Gn), σ ∧ C, ζ >

if D ∪ {ζ} 2 ¬(∃) σ ∧ C.

Figure 3.1: Rules of Inference for CLP(D)

Piggybacking on the results for the CLP(X) scheme we obtain both soundness and
completeness results for CLP(D); for program P, query %, and domain axiomatization
D we have:

Theorem 3.1 (Soundness of CLP(D)). If % has a successful derivation with com-
puted answer

∨
i=1..k σi then P ∪ D � (∀)

∨
i=1..k σi ⊃ %.

Theorem 3.2 (Completeness of CLP(D)). If P ∪D � (∀)σ ⊃ G and σ is satisfiable
wrt. D, then there are successful derivations for the goal G with computed answers
σ1, . . . , σn such that D � (∀)(σ ⊃ (σ1 ∨ . . . ∨ σn)).

Let us illustrate the power of CLP(D) by the following example; it highlights the
capability of CLP(D) to infer disjunctive plans:

Example 3.7 (Disjunctive Plans). Assume the initial state is specified by

(Holds(On(Block1,Table), S0) ∨Holds(On(Block2,Table), S0))∧
¬(∃x)Holds(On(x,Block1), S0) ∧ ¬(∃x)Holds(On(x,Block2), S0)∧
Holds(On(Block3,Table), S0) ∧ ¬(∃x)Holds(On(x,Block3), S0);

so we know that Block1 or Block2 are on the table with no obstructing block on top
of them, just as Block3 is. Let the precondition and the effects of moving a block be

54

3.3 Proof Theory

axiomatized as in example 2.1:

(∀)Poss(Move(block1, x, y), s1, s2) ≡
Holds(On(block1, x), s1) ∧ x 6= y ∧
(¬∃block2)Holds(On(block2, block1), s1) ∧
(¬∃block3)(Holds(On(block3, y), s1) ∨ y = Table) ∧
s2 = Do(Move(block1, x, y), s1)

(∀)Poss(Move(block, x, y), s1, s2) ⊃
[(∀f)(f = On(block, y) ∨ (Holds(f, s1) ∧ f 6= On(block, x))) ≡ Holds(f, s2)].

Consider an ALP goal ?- do(move(X,block3)).. For this we obtain a successful
derivation containing two substates, informing us that we can achieve our goal by
the disjunctive plan consisting of

• moving Block1 atop Block3, or

• moving Block2 atop Block3.

However, it is important to note that this disjunctive plan does not yet tell us which
of the two alternatives will succeed. All it does is tell us that we can achieve the goal
if we can find out which of the two alternatives actually holds. This issue, and ways
around it, will be discussed in more detail below in section 3.6.2.

The Importance of Domain Closure on Actions

Let us next illustrate another peculiarity of the CLP(D) proof calculus:

Example 3.8 (The Universal Plan). Consider the following program, where Phi
shall denote the ALP-encoding of an arbitrary planning goal:

succeed :- do(A), ?(Phi).

Via the Constraint Rule of the CLP(D) proof calculus we obtain a successful deriva-
tion with constraint store Poss(a, S0, s)∧HOLDS(φ, s). This informs us that we can
achieve our goal φ if there exists an hitherto unspecified action a such that φ holds
after the execution of a.

Of course, such an answer is not very helpful, and the above example clearly
indicates the need for a domain closure axiom on actions in D: Let A denote the
set of all functions into sort Action in D. Then the following is the desired domain
closure axiom on actions:

(∀a, ~x)
∨
A∈A

a = A(~x).

Henceforth, we stipulate that all D contain such an axiom.

55

Chapter 3 Action Logic Programs

3.3.3 Refinements and Extensions of the Proof Calculi

We proceed by detailing two refinements of the CLP(D) proof calculus: We first
address the question how to avoid conditional answers — at least sometimes. Then
we discuss an even more general notion of answer (substitutions) — in some cases it
may be considered useful to also admit inequality constraints and even more general
answer constraints. We then add a brief discussion of how both the LP(D) and the
CLP(D) proof calculus can be extended by negation as finite failure.

Conditional Answers in CLP(D)

As already pointed out, in constraint logic programming the answers in CLP(D)
are conditional: for an answer

∨
i=1..k σi to a query we have to check whether D �∨

i=1..k σi to see whether the query is indeed entailed. We observe that in CLP(D)
each single constraint store σi is a logical conjunction; thus σi is entailed by D iff.
every individual constraint C in σi is entailed.

For those constraints that were added using equivalence 3.1 by the end of a deriva-
tion this has already been established, hence these constraints don’t have to be added
to the constraint store. The status of those constraints that were added using equiv-
alence 3.2 is not clear, though — they may be entailed by D, or they may only
be consistent with D. Accordingly, we propose to introduce two versions of the
constraint rule (cf. figure 3.1) by distinguishing the two logical possibilities that

• either it is the case that D ∪ {ζ} � (∃) σ ∧ C, or

• it holds that D ∪ {ζ} 2 (∃) σ ∧ C and D ∪ {ζ} 2 ¬(∃) σ ∧ C. 4

Of course, for a constraint C that is added to the constraint store by either of these
two variants of the constraint rule, at a later stage of the derivation we cannot tell by
which variant of the rule it was added. Hence we extend the calculus by a marking
mechanism, for recording which constraints are already solved. If a constraint C
is added to the store σ using that D � (∃) σ ∧ C, all constraints in the store are
marked as solved. However, the second of the above two logical possibilities may
require that a constraint marked as solved must be marked as unsolved again, as
highlighted by the following example:

Example 3.9 ((Un-)Marking Constraints as Solved). Assume we want to answer the
query ?- ?(on(Block,table)), ?(on(Block,block1)., where the special atoms
share the variable Block. Further assume that the initial state is axiomatized as

(∃x)Holds(On(x,Table), S0)
(∃x)Holds(On(x,Block1), S0).

4The final version of the two constraint rules is only given in figure 3.2 below.

56

3.3 Proof Theory

Clearly, D � (∃x)Holds(On(x,Table), S0) and D � (∃x)Holds(On(x,Block1), S0), but
D 2 (∃x) Holds(On(x,Table), S0) ∧ Holds(On(x,Block1), S0). In the first step of a
derivation we establish that the special atom is entailed, add it to the constraint store,
and mark it as solved. In the next derivation step, however, it becomes clear that
the constraint has to be marked as unsolved again.

Non-ground constraints that are marked as solved at the end of a derivation can be
omitted from the answer constraint. Refining the Mark() and Unmark() operations
is therefore crucial: More fine-grained marking operations will also allow us to omit
more ground constraints from the constraint store. For this purpose we introduce
the notion of relevant constraint:

Definition 3.7 (Relevant Constraint). Let σ be the constraint store prior to rule
application, and let C be the selected constraint. A constraint Ci occurring in σ is
relevant for C if and only if it either

• shares variables with C; or

• shares variables with another relevant constraint.

Based on this definition we observe that in a derivation state where C is the
selected constraint we have the following:

• If we check that D ∪ {ζ} � (∃)
∧
iCi ∧C we only consider relevant constraints

Ci. Of course, we also only mark the Ci and C as solved.

• If we establish that D ∪ {ζ} 2 (∃) σ ∧C and D ∪ {ζ} 2 ¬(∃) σ ∧C we call the
Unmark() operation only on the constraints relevant for C, too.

The refined rules of inference for CLP(D) are depicted in figure 3.2; the opera-
tions Mark() and Unmark() take formulas from the constraint store as argument and
annotate the occurring relevant literals as solved or unsolved, respectively.

As before, a derivation is successful if it is ending in
∨̇
i=1..n < ⊥, σi, ζi >. But

now the formula
∨
σ∗i is the computed answer, where σ∗i is obtained from σi by omit-

ting any constraint marked as solved. For this refined proof calculus and notion of
computed answer our soundness and completeness results from theorems 3.1 and 3.2
continue to hold.

Obviously, Constraint Rule I can be applied in cases where the Substitution Rule
is applicable, too. However, the latter yields a higher information content. Hence,
for an actual implementation of the CLP(D) proof calculus it is reasonable to adopt
the following strategy:

• first we check for the existence of a (disjunctive) substitution; and

• next we check for the (existential) entailment of the constraint C; and

57

Chapter 3 Action Logic Programs

Substitution Rule:

< (¬G1 ∨ . . . ∨ ¬C ∨ . . . ∨ ¬Gn), σ, ζ >∨̇
i=1..k < (¬G1 ∨ . . . ∨ ¬Gn), σ, ζ ∧ C ∧ θi >

where D ∪ {ζ} � (∀)C ∧Θ with most general disjunctive substitution Θ =
∨
i=1..k θi

Constraint Rule I:

< (¬G1 ∨ . . . ∨ ¬C ∨ . . . ∨ ¬Gn), σ, ζ >
< (¬G1 ∨ . . . ∨ ¬Gn),Mark(σ ∧ C), ζ >

if D ∪ {ζ} � (∃)σ ∧ C.

Constraint Rule II:

< (¬G1 ∨ . . . ∨ ¬C ∨ . . . ∨ ¬Gn), σ, ζ >
< (¬G1 ∨ . . . ∨ ¬Gn),Unmark(σ ∧ C), ζ >

if D ∪ {ζ} 2 (∃)σ ∧ ¬C and D ∪ {ζ} 2 ¬(∃)σ ∧ C.

Figure 3.2: Refined Rules of Inference for CLP(D)

• only then we try to verify that the constraint C is at least consistent with D
and P.

To gain a better understanding of the role played by conditional answers for the
completeness of CLP(D) consider the following example:

Example 3.10 (Conditional Answers in CLP(D)). Assume that an ALP P is defined
by the following clauses over an empty domain description D:

a :- ?(Phi).
a :- ?(not Phi).

— where Phi shall denote some arbitrary state property. Clearly D ∪ P � A because
of � φ ∨ ¬φ. In P, A has two derivations, one ending with the constraint store φ,
and an analogous one ending with the store ¬φ.

This example illustrates the nature of our completeness result for CLP(D): in
order to establish that some query % is indeed entailed by a program together with a
domain axiomatization it may be necessary to have multiple successful derivations,
each ending with constraint store σi. The query can then be proven by establishing
that

∨
i σi � %. From an implementation point of view this clearly is bad news.

58

3.3 Proof Theory

We can only hope that no programmer will feel tempted to use such tautological
constructs for her ALP.

Example 3.10. (continued) Next assume we consider only a single successful
derivation, ending, e.g., with constraint store σ = φ. This informs the programmer
that P∪D � φ ⊃ A, meaning that, if she can somehow ensure φ to hold, A will also
hold.

From an implementation point of view it is clearly easer to only consider single
derivations, informing the programmer that her goal can be achieved, provided that
the constraints from the store can be met. This shifts most of the burden on the
programmer, but avoids a daunting reasoning task. This very course of action is
also taken by virtually all existing implemented CLP(X)-systems.

Constraint Store Handling

We next make two observations that can be exploited to obtain a simpler constraint
store:

• Ground constraints, that are marked as solved, can safely be omitted from the
constraint store.

• If, for action domain D, we have that D � σ ≡ >, the constraint store σ
obviously can be replaced by >.

The latter of these two observations will probably not prove to be very fruitful in
practice: The check is expensive, and not likely to succeed often. The case where
D � σ ≡ ⊥ is of far greater practical importance, indicating a failed derivation. Note
that this case is already addressed by the rules of inference.

Generalized Answer Notions

Strictly speaking, disjunctive substitutions are not necessary for CLP(D); we could
also stick with ordinary substitutions, and treat goals as answer constraints if there
are no suitable substitutions. Note that this would not at all affect our soundness
and completeness results; the computed answers would simply be less informative.

In fact, the Constraint Rule from the proof calculus from figure 3.1 already without
the Substitution Rule constitutes a sound and complete proof calculus. In this case
for every query % we obtain the computed answer that the query holds if it holds,
% ⊃ %. This certainly is the least informative type of answer one can imagine.

On the other hand, the notion of a disjunctive answer substitution is not yet strong
enough to generate answers that are maximally informative in all cases, something
that can easily be seen in the following example:

59

Chapter 3 Action Logic Programs

Example 3.11 (Problems with Disjunctive Substitutions). Assume that initially
we only know that no block except Block4 is directly on the table; i.e. we have:

Holds(On(Block4,Table), S0)
(∀x) x 6= Block4 ⊃ ¬Holds(On(x,Table), S0)

The query ?- ?(not(on(X,table))). has a successful derivation, informing the
programmer that there is something, that is not directly on the table. Albeit it would
be more informative if we could also tell the programmer that this something is not
Block4. A related issue surfaces if we assume that initially we only know that Block2

is on the table, unless the table has been toppled:

¬Holds(Toppled(Table), S0) ⊃ Holds(On(Block2,Table), S0)

A programmer is probably much more happy if the computed answer to her query
?- ?(not(on(X,table))). tells her that the query can be satisfied if the table has
not been toppled, than if she is only being told that there is something on the table if
there is something on the table.

Based on these considerations we can generalize the notion of answer to an arbi-
trary first order formula. Both soundness and completeness results for CLP(D) carry
over to this setting, if we adapt the derivation rules to the employed notion of answer.
A recent survey and study of such a generalized answer notion in the framework of
resolution theorem proving can be found in [Burhans and Shapiro, 2007].

However, for this thesis we adopt the view that the notion of answer should be
extensional: We consider the generation of (possibly a disjunction of) witnesses
for state properties to be the most interesting type of answer, and have defined
the CLP(D) proof calculus accordingly. As highlighted by the example 3.11 above
this viewpoint is debatable; in any case our proof calculus is flexible enough to
accommodate more general, intensional notions of answer.

On Time Structures

Let us at this point digress to issues related to the axiomatization of the underlying
time structure — these will be relevant for the next section on negation as finite
failure.

Regarding the underlying time structure, we first observe that there are many
action domain axiomatizations in the literature that do not include an explicit ax-
iomatization of time. For example, none of the Fluent Calculus action domains
in [Thielscher, 2005d] features an axiomatization of situations. Likewise, it has been
proved in [Pirri and Reiter, 1999] that Golog programs can safely be evaluated with-
out ever referring to the foundational axioms of the Situation Calculus. For proving

60

3.3 Proof Theory

ordinary ALP queries — quantifying existentially over time points — an axiomati-
zation of the time structure is not needed either.

However, an axiomatization of the time structure is needed in order to define cer-
tain properties of action domains, or to infer, e.g., domain constraints. For the UAC
it has been stipulated that action domains contain a time structure axiomatization
that is at least partially ordered, and contains a least element. For practical pur-
poses the following three time structures seem to suffice: The natural numbers, the
positive real numbers, and situations. If we want to stick to the first order semantics
of ALPs we have to stipulate that these be axiomatized in first order logic, too.

For the first order axiomatization of situations we start from the second order
axiomatization given in [Reiter, 2001a]. The only change is that we replace the
second order induction axiom by the axiom scheme

φ[S0] ∧ (∀s, a)(φ[s] ⊃ φ[Do(a, s)]) ⊃ (∀s′)φ[s′],

where φ ranges over all state formulas with s the only free variable.
For the natural numbers we can use first order versions of either Presburger or

Peano arithmetic; for the real numbers there is Tarski’s axiomatization [Shoenfield, 1967].
These time structure axiomatizations are likewise to be augmented by the induction
axiom scheme

φ[0] ∧ (∀s)(φ[s] ⊃ φ[s+ 1]) ⊃ (∀s′)φ[s′].

The purpose of these induction schemes is to ensure that it is possible to infer
that some property holds at every time point, i.e. proving domain constraints. If we
are not using second order logic for the induction axioms this means that the time
structure admits non-standard models. In some contexts this may be undesirable —
cf. the discussion on planning completeness in section 3.5.2 below. But wrt. domain
constraints it seems to be sufficient if we can prove all first order definable invariant
state properties.

Negation as Finite Failure

We have defined action logic programs as a collection of Horn clauses. This means
that no negated atoms (normal or special) may occur in the rule body.

The logic programming community has long felt the need to also allow negated
atoms in the rule body of logic program clauses. For plain logic programs this
extension has been achieved by the Clark completion of a logic program [Clark, 1978],
where one reads rules as logical equivalences instead of logical implications, and
resorts to the computation rule of negation as finite failure.

For ALPs, we can also allow negative literals in rule bodies and evaluate them
by the inference rule of negation as finite failure: The respective soundness and
restricted completeness results for the constraint logic programming scheme CLP(X)

61

Chapter 3 Action Logic Programs

(cf. [Jaffar et al., 1998, Frühwirth and Abdennadher, 2003]) then naturally extend
to ALPs with negation.

But first we have to clarify what a negated goal in an unexpanded ALP should
mean. For ordinary program atoms that do not depend on the special atoms the
meaning is intuitively quite clear. Negated ?(Phi) atoms are to be read as D �
¬HOLDS(φ, s), and negated do(A) atoms as D � ¬Poss(φ, s). In both cases negation
as failure does not yet augment the expressivity of the language. But in general,
there is an interesting reading of a negated program atom that does depend on the
special atoms as a goal being unachievable.

To reflect this reading the macro-expansion of ALPs has to be adapted. In ex-
panded ALPs the goals are no longer directly linked by time variables — rather, for
negated goals the second time variable is not part of the chain. Let us illustrate the
underlying idea by a small example:

Example 3.12 (Expanding Programs with NaF). The following schematic program
clause is meant to express that in our strategy, if we cannot exploit certain crucial
subplans, then we resort to “plan B”:

strategy :- \+ sub_plan1, \+ sub_plan2, planB.

Here \+ denotes negation as finite failure. This is naturally expanded to

(∀)Strategy(s1, s2) ⊂
¬(∃s3)SubPlan1(s1, s3) ∧ ¬(∃s4)SubPlan1(s1, s4) ∧ PlanB(s1, s2).

The Clark completion can then be applied to expanded programs. As is clear from
this example, positive goals are only linked to positive goals.

The Role of Domain Constraints Note that this extension of CLP(D) by negation
as finite failure leads to intricate issues. In particular, it is then necessary to prove
domain constraints in order to derive ALP queries. Consider the generic encoding
of a planning problem as an ALP:

strategy :- ?(Phi).
strategy :- do(A), strategy.

The query ?- \+ strategy is expanded to ¬(∃s)Strategy(S0, s), and, hence, can be
derived if and only if there is no sequence of actions achieving the goal. In general
however, this cannot be proved by checking all (possibly infinite) sequences of actions
— as the simple CLP(D) calculus would do. But it may be possible to prove this
by considering the program and the underlying action theory as a whole — if the
underlying action theory contains a suitable axiomatization of the time structure it
may in fact be possible to prove that D � ∀s(¬HOLDS(φ, s)).

62

3.4 Computed Answers and Inferred Plans

The best we can achieve for our proof calculi, is to say that negation as finite
failure is complete if the negated goals are finitely refutable — this is exactly the
restricted completeness result for CLP(X) from [Jaffar et al., 1998].

We do not give a proof calculus that can prove domain constraints here. Such
a calculus would have to operate on the program as a whole together with the
action theory; and, arguably, a less simple proof calculus results in a less usable
programming language.

Relation of CLP(D) to CLP(X)

Let us conclude this section by some remarks on how constraint logic programming
over action theories (CLP(D)) relates to other instances of the general constraint
logic programming scheme CLP(X).

In one direction, the goal is to take advantage of existing implementations of
CLP(X) for specific constraint theories X, like, e.g., the natural numbers N, the ra-
tional or real numbers Q and R, finite domain constraints, or set constraints. Recall
that the only requirement of the CLP(X) calculus is that the respective constraint
theory X is axiomatized in first order logic. If we include the constraint theory X
in the foundational axioms Daux of D, we can pose ALP queries ?(Phi), where the
state property φ is evaluated against X. This observation provides the theoretical
foundation for the integration of existing constraint solvers into an implementation
of our ALP framework.

From the opposite perspective, we observe that neither the LP(D) nor the CLP(D)
proof calculus is limited to action theories as background theories. LP(D) can serve
as a sound and complete proof calculus for any constraint theory that has the wit-
ness property (is query-complete). And CLP(D) constitutes a sound and complete
proof calculus for those constraint theories that do not exhibit this property. The
techniques used for evaluating the Poss and HOLDS atoms can be seen as analogous
to existing constraint solving techniques for other constraint theories X.

3.4 Computed Answers and Inferred Plans

Somewhat surprisingly, there remains the question how the inferred plans should be
communicated to the programmer. The usual notion of a computed answer for a
query in logic programming will not provide any information concerning the inferred
plans to the programmer.

The astute reader may have noticed that the variables of sort time in computed
answers do not occur in unexpanded action logic programs. In the case of situation-
based background theories D it is sufficient to print out the final situations. In
general this does not suffice, though: neither the natural nor the real numbers serving
as time structures provide any information on the sequence of actions performed.

63

Chapter 3 Action Logic Programs

The programmer of an ALP is most interested in plans that achieve goals; that
is, she is most interested in the sequence of the evaluated Poss(a, s1, s2) atoms, or,
in the case of disjunctive plans, in the corresponding tree. Rather than have the
programmer construct this information herself, we can also add this functionality to
our proof calculi: In the general case of CLP(D) the constraint stores already contain
the necessary information; in the special case of query complete domains the calculus
is easily extended to construct this sequence. We have refrained from making this
extension explicit in the previous sections in order to keep the presentation simple.

3.5 Planning Completeness

The soundness and completeness results from the previous section assure us that a
query can be proved if and only if the ALP together with the action theory entail
the query. In this section we consider the following question: Assume that the
action theory entails that a goal is achievable, i.e. D � (∃s)HOLDS(φ, s) for goal
description φ. Is there an ALP that can be used to infer a plan achieving the goal?
It turns out that, unfortunately, in general there need not be such a program. We
next identify a range of properties that may be exhibited by action theories. We
then discuss which of these properties are needed to ensure planning completeness.
Probably the most drastic measure we have to take to this end is that we use second
order axiomatizations of the underlying time structure.

3.5.1 Properties of Background Theories

We proceed by identifying a number of properties that may be exhibited by do-
main axiomatizations. Not all of these notions will be required for showing planning
completeness; it is just convenient to collect all these properties in one definition.
Except for the notions of deterministic domains, temporal determinacy, symmet-
ric, universal and anytime domains these notions have already been introduced
in [Thielscher, 2007]. Following the definition we give motivating examples, illus-
trating the introduced notions.

Definition 3.8 (Properties of Action Domains). An action domain D with precon-
dition axioms DPoss and foundational axioms Daux is

• progressing if

– Daux |= (∃s1∀s2) s1 ≤ s2 and
– DPoss ∪ Daux |= Poss(a, s1, s2) ⊃ s1 < s2.

• sequential if it is progressing and no two actions overlap; that is

DPoss ∪ Daux |= Poss(a, s1, s2) ∧ Poss(a′, s′1, s
′
2) ⊃

(s2 < s′2 ⊃ s2 ≤ s′1) ∧ (s2 = s′2 ⊃ a = a′ ∧ s1 = s′1).

64

3.5 Planning Completeness

• ramification free if for every effect axiom

Poss(A(x̄), s1, s2) ⊃ η1[s1, s2] ∨ . . . ∨ ηk[s1, s2]

each ηi[s1, s2] is of the form

(∃ȳi)(φi[s1] ∧ (∀f) [δ+
i [s1] ⊃ Holds(f, s2)]

∧ (∀f) [δ−i [s1] ⊃ ¬Holds(f, s2)]),

i.e. s2 does not occur in δ+
i and δ−i .

• symmetric if for every effect axiom

Poss(A(x̄), s1, s2) ⊃ η1[s1, s2] ∨ . . . ∨ ηk[s1, s2]

each ηi[s1, s2] is of the form

(∃ȳi)φi[s1] ∧ (∀f) [δi[s1, s2] ≡ Holds(f, s2)],

i.e. the conditions for positive and negative effects δ+
i and δ−i from ordinary

effect axioms are symmetric (via negation).

• universal if for every effect axiom the variables of sort object occurring in
terms of sort fluent are universally quantified (assuming negation normal
form).

• temporally determined if all precondition axioms are of the form

Poss(A(x̄), s1, s2) ≡
∨

i

πAi [s1] ∧ ϕi, (∗)

where πA[s1] does not mention s2, and each ϕi is an equality atom equating
the time variable s2 to a function with arguments among s1 and x̄.

• deterministic if

– it is ramification free,
– it is temporally determined with the additional requirement that (∗) con-

tains a single disjunct (i.e. i = 1), and
– for every effect axiom

Poss(A(x̄), s1, s2) ⊃ η1[s1, s2] ∨ . . . ∨ ηk[s1, s2]

the condition parts φi and φj in ηi and ηj are mutually exclusive for i 6= j.

65

Chapter 3 Action Logic Programs

• anytime if it is sequential and action applicability is not tied to a specific time-
point; that is DPoss ∪ Daux entail

(∃s2)(Poss(a, s1, s2) ∧ (∀f)[Holds(f, s1) ≡ Holds(f, s′1)]) ⊃
(∃s′2)Poss(a, s′1, s

′
2).

The notion of a progressing action domain is very natural: We preclude action
effects that take place in the past. The definition of a sequential domain forestalls
axiomatizing truly concurrent actions. This restriction wrt. expressivity is necessary
because of our reading of unexpanded ALPs as temporally ordered sequences.

Next consider an action that leads to a transition from time point s1 to time point
s2: In ramification-free domains the effects of the action that materialize at time
point s2 depend only on properties that hold at time point s1. Ramifications in the
unifying action calculus are modeled as effects materializing at time point s2 only if
some other properties hold at s2. We need this notion of ramification-free domains
for the definition of deterministic domains.

Let us illustrate our notion of a deterministic domain by the following example:

Example 3.13 (Deterministic Domains). Assume we axiomatize the precondition
of the action MoveSomeBlock as

(∀)Poss(MoveSomeBlock(x, y), s1, s2) ≡ s2 = Do(MoveSomeBlock(x, y), s1)

assuming it is always possible to move some block from x to y, and the effects ac-
cordingly as follows:5

(∀)Poss(MoveSomeBlock(x, y), s1, s2) ⊃
[(∀f)[(∃block1)f = On(block1, x) ∧ x 6= y∧

(¬∃block2)Holds(On(block2, block1), s1) ∧
(¬∃block3)(Holds(On(block3, y), s1) ∨ y = Table)] ∨

(Holds(f, s1) ∧ ¬Φ(s1))
≡ Holds(f, s2)].

This effect axiom is deterministic according to our definition, although arguably it
might contradict some of our intuitions wrt. determinism: We know that there is
some block we can move, yet it might be a different one in every model. However,
such a weak notion of determinism for action domains will resurface in the proof of
proposition 5.1. This notion of determinism is determinism wrt. a specific interpre-
tation — in every interpretation the action’s effects are uniquely determined.

5For readability we denote the lengthy condition for a negative effect just by Φ(s1).

66

3.5 Planning Completeness

The notion of a temporally determined action domain is implicit in the macro-
expansion of action logic programs. The following example illustrates the difficulties
arising otherwise:

Example 3.14 (Temporally Determined Domains). A (not temporally determined)
precondition axiom of the form

(∀)Poss(A, s1, s2) ≡ s2 > s1

does not admit useful substitutions on s2: Let the underlying time structure be given
by the natural numbers and let s1 = 0. Then each of the infinitely many n ∈ N such
that n > 0 constitutes a potential endpoint for the action’s duration. However, we
cannot enumerate these infinitely many potential endpoints with the help of a dis-
junctive substitution. In contrast, with a branching time structure as in the Situation
or the Fluent Calculus, precondition axioms are always of the form

(∀)Poss(A(x̄), s1, s2) ≡ π(x̄, s1) ∧ s2 = Do(A(x̄), s1),

where π(x̄, s1) does not contain s2; these domain axiomatizations are necessarily
temporally determined. The precondition axiom

(∀)Poss(A, s1, s2) ≡ s2 = s1 + 10 ∨ s2 = s1 + 20

illustrates how actions with variable duration can be axiomatized.

The idea of anytime action domains, too, is implicit in the definition of macro-
expansion of action logic programs. Let us likewise illustrate this point by means of
an example:

Example 3.15 (Anytime Domains). Let the underlying time structure be the natural
numbers. Suppose there are two actions A and B, with respective precondition axioms
Poss(A, s1, s2) ≡ s1 = 0 ∧ s2 = 1 and Poss(B, s1, s2) ≡ s1 = 2 ∧ s2 = 3. Intuitively,
it should be possible to do A and then B. The query ?- do(a), do(b) is macro-
expanded to (∃)Poss(A, 0, s′1)∧Poss(B, s′1, s

′
2), however, which does not follow. This

kind of problem is precluded by anytime domains.

We have seen that the macro-expansion of ALPs does not harmonize with domain
axiomatizations that are not anytime or temporally determined. There are a number
of options: We can adjust macro-expansion by only imposing a partial order on the
time variables. If we stick with the defined macro-expansion, and at the same time
do not restrict the underlying action theories then the desired planning completeness
result is precluded. The third option is captured by the following definitions:

67

Chapter 3 Action Logic Programs

Definition 3.9 (Admissible Domain Axiomatization). A domain axiomatization D
is admissible if it is modular, sequential, temporally determined, anytime, universal,
symmetric, and ramification free. Furthermore, we restrict the axiomatization of
the underlying time structure to be given by by the second order axiomatization of
situations (cf. [Reiter, 2001a]).

These conditions for admissible action domains are already quite restrictive. On
the one hand, they preserve all of Situation and Fluent Calculus; on the other hand,
they rule out the Event Calculus, which is based on a different time structure. They
also rule out modeling effect axioms with occluded fluents — cf. the discussion of
how occlusions can be modeled in the UAC at the end of definition 2.11. Finally,
observe that temporally determined domains that are based on the time structure
of situations do not allow to model actions with varying duration.

3.5.2 Strong Planning Completeness

But ssuming that an action domain under consideration D is admissible we can
obtain the following result:

Theorem 3.3 (Strong Planning Completeness). Let P be the generic ALP encoding
of a planning problem

strategy :- ?(Phi).
strategy :- do(A), strategy.

familiar from example 3.1, and let the query % be ?- strategy.. Assume that
D � (∃s)HOLDS(φ, s) and P ∪ D � (∀)σ ⊃ % and σ is satisfiable wrt. D, where φ
does not quantify over fluents. Then there exist successful derivations of the query
Strategy(S0, s) in CLP(D) with computed answers σ1, . . . , σn such that D � (∀)(σ ⊃
(σ1 ∨ . . .∨ σn)). Moreover, the plans computed by these derivations can be combined
into a (disjunctive) plan achieving the planning goal φ. If in addition the domain
axiomatization D is also query-complete a similar result for LP(D) is obtained.

Before giving a proof of the theorem let us fix the notation for plans:

Definition 3.10 (Plan, Disjunctive Plan). A valid plan that is achieving the goal
HOLDS(φ, s) in an action theory D is a conjunction

∧
i=1..k Poss(ai, si1 , si2) of Poss

atoms such that

• each ai is a non-variable action term (possibly containing variables); and

• each sij is a non-variable time term such that

– s11 = S0;
– si+11 = si2; and

68

3.5 Planning Completeness

– D � HOLDS(φ, sk2).

A valid disjunctive plan is a disjunction of valid plans such that the action theory en-
tails that the goal holds at one of the plan endpoints. The reading of conditional plans
as trees of Poss atoms is readily unfolded to an equivalent reading as a disjunctive
plan.

Sketch. The proof consists of two parts:
First, we have to show that if D � (∃s)HOLDS(φ, s) then there exists a disjunctive

plan with possible final time-points si=1..k such that

D � (∃s)HOLDS(φ, s) ∧
∨
i

s = si.

That is, if there exists a timepoint satisfying the goal, then there also is a (disjunc-
tive) plan achieving the goal.

In a second step we have to show that this disjunctive plan can be found by the
generic planning ALP.

Concerning the first step, we note that admissible action theories admit a form of
reasoning by regression that is very similar to the standard reasoning by regression in
Reiter’s Situation Calculus [Reiter, 2001a]. For this we need that admissible action
theories are modular, sequential, temporally determined, anytime, universal, sym-
metric, and ramification free. Moreover, we exploit the condition that the planning
goal does not quantify over fluents.

To see how this regression reasoning works assume given an atom of the form
Holds(F (~x),Do(A, s))6, and the respective precondition and effect axiom; the last
of these will be of the form

Poss(A(~x), s1, s2) ⊃
∨
i

(∃~yi)(φi[s1] ∧ (∀f)[δi[s1] ≡ Holds(f, s2)].

Let the precondition axiom be given by

Poss(A, s1, s2) ≡ π[s1] ∧ s2 = Do(A, s1).

Then for regression we instantiate the effect axiom by f = F (~x) and replace the
atom Holds(F (~x),Do(A, s)) by the appropriately instantiated∨

i

(∃~yi)(φi[s] ∧ (∀f)[δi[s] ∧ π[s]]).

This idea is then extended to complex formulas in the spirit of [Reiter, 2001a].

6The situation term s shall denote any non-variable situation term.

69

Chapter 3 Action Logic Programs

Next we observe that it has already been proven for the Situation Calculus in
[Savelli, 2006] that goal achievability implies the existence of a (disjunctive) plan.
We can show that admissible action domains likewise admit reasoning by regression.
Given this, and that the underlying time structure is given by a second order ax-
iomatization of situations the respective proof for the Situation Calculus is readily
adapted to our setting.

Given this first step of the proof, the second step is immediate: If there exists a
(disjunctive) plan achieving the goal the generic planning ALP will find it.a

Of course, the generic planning ALP can find a (disjunctive) plan achieving a goal
if it exists — even if the underlying action domain is not admissible. In particular
the very same disjunctive plans will be found no matter whether the axiomatization
of situations in an admissible action domain is second order or first order (replacing
the second order induction axiom by a first order induction scheme). It is only
the proof of the correspondence between goal achievability and plan existence from
[Savelli, 2006] that does not go through unmodified in the first order case.

3.5.3 ALPs for Conditional Planning

Next follows a guide for writing ALPs that are meant to find conditional plans. In
general, these will work only if a clause like

strategy :- do(A), strategy.

is included. Inferring a disjunctive substitution on the action variable A corresponds
to conditional branching in the planning tree. However, we cannot write an ALP
clause specifying which branching we would like to try. For example, we might want
to try whether applying either action A1 or action A2 will achieve our goal. But as
an ALP we cannot directly write something like

strategy :- (do(a1) \/ do(a2)), strategy.

If φi is the precondition of action Ai we can of course write

strategy :-
?((Phi1 /\ A = a1) \/ (Phi2 /\ A = a2), do(A),
strategy.

For this, however, the programmer needs intimate knowledge of the action domain
axiomatization — something that the ALP framework tries to make superfluous. We
can also try using the Lloyd-Topor transformation for disjunction in logic programs.
This results in a program

strategy :- do(a1), strategy.
strategy :- do(a2), strategy.

70

3.5 Planning Completeness

However, if we use this program in CLP(D) we need two derivations (via the con-
straint rule each) in order to derive that the strategy is successful. If we use an
action variable A instead we obtain a single derivation using a most general disjunc-
tive substitution.

Hence, as a rule of thumb, in an ALP for solving conditional planning problems
a clause including a literal do(A) should be included. Making this clause the last in
the program ensures that unconditional plans are preferred over conditional plans
in the search for solutions.

3.5.4 Conditional versus Conformant Planning

As discussed in the preceding sections LP(D) can be used to solve unconditional
planning problems, whereas CLP(D) covers the conditional case, where we want
to find one suitable plan for every possible state of affairs. If we restrict state
representation to propositional logic our notions of unconditional and conditional
planning problems coincide with those studied by the planning research community.
The planning research community has studied a third type of planning problems that
is situated between the conditional and the unconditional case. It is this problem of
conformant planning that we will address in this section.

As in conditional planning we admit non-query-complete background theories,
and, hence, disjunctive or existential information. The problem of conformant plan-
ning now consists of finding a single plan that will achieve the planning goal no
matter what the real state of affairs is. The underlying assumption is that the agent
is devoid of sensors (something we will discuss next), and hence cannot determine
the actual state of the world when executing the plan. ALPs also provide a logical
characterization of conformant planning, again generalized to full first order state
representation:

Proposition 3.3 (Conformant Planning Completeness). First recall the generic
encoding of a planning problem as an ALP P

strategy :- ?(Phi).
strategy :- do(A), strategy.

familiar from example 3.1, and then let the query % be ?- strategy.. Further let
D be a non-query-complete, but admissible domain (cf. definitions 3.3 and 3.9). As-
sume that there is a conformant (i.e. non-disjunctive) plan achieving HOLDS(φ, s).
Then there is a successful derivation of the query ?- strategy. in the LP(D) cal-
culus.

The main purpose of the ALP framework is the specification of domain-dependent
heuristics: For this, if the background action domain is not query-complete, then
we may want to use the CLP(D) proof calculus for querying some state properties.

71

Chapter 3 Action Logic Programs

However, in its unrestricted version the CLP(D) calculus computes conditional, not
necessarily conformant plans. In such a setting a version of our proof calculi tailored
to conformant planning can be obtained as follows: We use the CLP(D) proof calcu-
lus on non-query-complete domains; but we restrict the evaluation of all Poss-literals,
and of all HOLDS-literals that share variables with Poss-literals to the substitution
rule using non-disjunctive substitutions.

3.6 Planning in the Presence of Sensing Actions

So far we have only dealt with actions that have effects on the domain of discourse —
in some sense it is always possible to imagine a physical change effected by executing
the actions. Sensing actions are usually seen to be of a different kind: If an agent
performs a sensing action it does not change the world, but rather it learns about
the state of the world. In this section we show how sensing can be accommodated
in action domains based on the UAC, and, hence, be made available for ALPs.

Sensing actions have already been addressed in each of the big three action calculi:
In the Event Calculus sensing actions have been considered, e.g., in [Shanahan, 2002]
and [Shanahan and Randell, 2004], with a special emphasis on visual perception and
the bidirectional flow of information between cognition on the logical level and low-
level sensor data. Sensing actions have been introduced in the Fluent Calculus in
[Thielscher, 2000]; the work on sensing in the Situation Calculus is summarized in
[Scherl and Levesque, 2003]. Both the Fluent and the Situation Calculus approach
combine sensing with a formalized notion of knowledge.

With this plethora of proposals for reasoning about sensing actions we face a
dilemma: On the one hand we would like to have some method for reasoning about
sensing actions; on the other hand the ALP framework stands apart by being inde-
pendent from a particular action calculus, and by being based on classical first order
logic only.

If we want to stick to these characteristics we cannot adopt the Situation Calculus
approach to reasoning about knowledge and sensing: This is based on a special
knowledge fluent, and the use of many different possible initial situations instead of
just one. Both ideas are absent from Event and Fluent Calculus, as well as from all
existing planning languages.

The formalized notion of knowledge in the Fluent Calculus relies upon the quan-
tification over states. For this state terms (collections of fluents) have to be present
in the action calculus — the UAC does not feature such terms.

In the following we propose a simple approach to reasoning about sensing actions
in the UAC that requires no additional machinery.

72

3.6 Planning with Sensing

3.6.1 Sensing Actions in the UAC

This approach is based on the following considerations: It is obvious that in offline
planning we cannot sense properties of the real world. But it is reasonable to assume
that for each sensor we know beforehand the finitely many, discrete sensing results
that it can return.

We also make a — more contentious — simplifying assumption wrt. sensing fluents
that are affected by exogenous actions. If a fluent might be affected by an action not
under the agent’s control then this fluent must be exempt from the frame assumption
— otherwise in general a contradiction may occur. Assume, e.g., we sense the
location of a block, and someone removes the block without our noticing it: If the
frame assumption is applied to this block a contradiction is readily obtained.

However, always excluding all fluents that might be affected by an exogenous
action from the frame assumption has its drawbacks, too: The agent immediately
forgets what it has just learned about such fluents. Combining the perception of
freely fluctuating properties with a solution to the frame problem in a single logical
framework in an intelligent fashion is an intricate problem left open as a challenge
for future work.

The formalized notions of knowledge in the Fluent and the Situation Calculus
allow to make a distinction between the formal world model, and the agent’s knowl-
edge thereof: It is possible to express settings where the action domain entails a
state property but the agent cannot infer that this property holds.

But for many applications it seems reasonable to identify the knowledge of the
agent with all the (formalized) knowledge about the world. Moreover, if accordingly
we do not leave the agent in the dark wrt. some aspects of the world model, then
a formalized notion of knowledge does not appear to be strictly necessary: We can
identify the knowledge of the agent with the logical consequences of its world model.
For sensing actions in the UAC it is this approach that we will take.

Instead of saying that, for action domain D and state property φ, we have D �
KNOWS(φ, s) we can also say D � HOLDS(φ, s). For the notion of “knowing
whether” instead of D � KNOWS(φ, s) ∨ KNOWS(¬φ, s) we can query whether
D � HOLDS(φ, s) or whether D � HOLDS(¬φ, s).

Our identifying knowledge with logical consequence gives rise to the so-called para-
doxon of logical omniscience: The agent knows everything that is logically entailed
by its world model. This has been criticized as counter-intuitive in the context of
both the Fluent and the Situation Calculus [Reiter, 2001b, Thielscher, 2005d]. We
do not wish to enter a discussion whether this alleged paradoxon actually is a prob-
lem here. A simplistic remedy for this issue would be to resort to a sound, but not
complete reasoning method. Recent work on a more principled approach to this
problem can be found in, e.g., [Liu et al., 2004].

73

Chapter 3 Action Logic Programs

Sensor Axioms

With these considerations in mind we opt for the following definition:

Definition 3.11 (Sensor Axiom). We introduce a subsort SenseFluent of sort
Fluent, and finitely many function symbols S of that sort. For each sensor fluent
function S we introduce a sensor axiom of the form

(∀s, ~x)Holds(S(~x), s) ≡
∨
~t∈T

~x = ~t ∧ φ(~x, s),

where T is a set of ground object vectors, and φ(~x, s) is a state formula with free
variables among ~x and s without occurrences of sense fluents.

The set T of ground object vectors describes the finitely many values the sensor
can return, whereas the state formula φ(~x, s) is meant to describe what the sensor
data mean — the meaning of sensor data may depend on both time-dependent and
time-independent predicates. Observe that a sensor axiom is just a special kind of
domain constraint. This observation leads us to define action domains with sensing
in the UAC as follows:

Definition 3.12 (Action Domain with Sensing). An action domain D in the UAC
is an action domain with sensing if

• there is a finite number of function symbols into sort SenseFluent; and

• for each fluent symbol S of that sort a sensor axiom is included in Ddc(we
denote the set of all sensor axioms contained in Ddc by DSense).

In our approach the purpose of the fluents of sort SenseFluent is to serve as an
interface to the sensor; hence the restriction that there is one sensor axiom for each
sense-fluent, and that no other sense fluents occur in that axiom.

It is worth pointing out that in the Situation Calculus we can only sense the truth
value of sense fluents F . In the UAC sensing truth values of fluents can be modeled
as follows:

(∀x, ~y, s)Holds(SF (x), s) ≡
[x = true ∧Holds(F (~y), s)] ∨ [x = false ∧ ¬Holds(F (~y), s)]

The sensor axioms we just introduced are strictly more general, though. They are
inspired by the sensing model of the Fluent Calculus.

74

3.6 Planning with Sensing

3.6.2 Discussion of the Approach

In [Levesque, 1996] a number of properties that an approach to planning in the
presence of sensing should exhibit have been discussed informally. In this section we
evaluate our approach wrt. these criteria.

First, in [Levesque, 1996] three different reasons for the necessity of sensing actions
are given: There may be incomplete information about the initial situation, there
may be exogenous actions, and there may be uncertain effects of actions. All three
settings allow a natural modeling in the UAC.

Redundant Branches in Plans Next it is argued that — in the presence of sensing
— plans must at least be viewed as trees of actions, rather than as sequences. The
same view is taken in ALPs. For this tree view of plans in general there is the
problem that branches may be redundant. In the case of an unsuccessful redundant
branch in a plan we might fail to recognize a valid plan, as is illustrated by the
following example: Assume we have a number of sensing results ti, and a number
of actions ai. Furthermore, assume that the goal can be achieved by action ai if
ti is observed for all i except one — say t1, a1. Now, if the domain entails that
t1 is the only sensing result that cannot plausibly be observed then the plan “if ti
then do ai” should be considered valid — the branch corresponding to t1 is what
we call a redundant branch. ALPs avoid this problem of redundant branches by
appealing to the notion of a most general disjunctive substitution. For example,
the query ?- ?(sense(X)), do(A). in our running example will infer a conditional
plan without the redundant branch a1.

Epistemically Adequate Plans An important issue that also stems from [Levesque, 1996]
is the notion of an epistemically adequate plan in the presence of sensing: A plan is
epistemically adequate if an agent following that plan at run-time will always know
precisely what to do. For illustration, assume we have two actions at our disposal:
a1 and a2. Further assume that we will achieve our goal if we either execute a1 or
a2 (but we do not know which one). Finally assume there is a sensing action that
will identify which of the two actions is applicable. Now there is a big difference for
an agent between a plan that says ”Do a1 or a2”, and a plan that says ”Perform the
sensing action, and execute the appropriate action”. It is this latter plan that meets
the criterion of being epistemically adequate.

Using the plain ALP framework by itself we cannot distinguish between these
two types of plans. In either of the two cases we obtain a successful derivation.
But this is easy to remedy: First, we generalize the notion of a plan to include the
Holds atoms for sense fluents in addition to the Poss atoms. Next we introduce the
following generic ALP, that captures epistemically adequate planning in the presence
of sensing:

75

Chapter 3 Action Logic Programs

strategy :- ?(goal).
strategy :- ?(SF), strategy.
strategy :- do(A), strategy.

Put in words, we are done if we have achieved the goal — this is as before. Otherwise
we

• obtain the (disjunction of) sensing results for sense fluent SF; or

• non-deterministically pick an action A

and continue planning. If furthermore we restrict the proof calculus so that disjunc-
tive substitutions are only applicable for sense fluents, but not for actions, then we
have obtained a characterization of epistemically adequate planning in the presence
of sensing in the ALP framework.

Conditional vs. Cyclic Planning On a last important issue that has also already
been discussed in [Levesque, 1996] our approach shows limitations: We can only
infer conditional, tree-like plans of the form “if then”. However, there are action
domains where plans require “while” loops. One example of this is an agent that
tries to chop down a tree, and after each blow has to perform sensing to see whether
it has already been successful [Sardiña et al., 2004]. What a solution to this problem
would have to look like in general is also discussed in [Sardiña et al., 2004] — where
it is emphasized that currently no feasible approach to this issue is known.

Observe that this last issue is closely related to the notion of strong planning com-
pleteness (cf. section 3.5.2). In particular, in admissible action domains conditional
plans without “while” are always enough. However, the wood chopping example
has been axiomatized in Situation Calculus in [Sardiña et al., 2004]. This does not
contradict the result on strong planning completeness because this axiomatization
requires a second order initial state axiom — this observation has already been made
in the discussion of this very issue in [Savelli, 2006].

3.6.3 ALPs for Planning in the Presence of Sensing Actions

Due to our particular approach to sensing actions for ALPs there are no major
formal differences between domains with, and domains without sensing actions. Let
us illustrate our approach to planning in the presence of sensors by the following
example:

Example 3.16 (Colored Blocks World with Sensing). Consider a variant of the
blocks world, where the blocks have colors. There are only two blocks, Block1 and
Block2. Further assume that the agent is equipped with a sensor that allows it to

76

3.6 Planning with Sensing

observe the color of the blocks; that is the fluent Coloring(block, x) is of the sort
SenseFluent. The following is the respective sensor axiom:

(∀block, color, s)Holds(Coloring(block, color), s) ≡
(block = Block1 ∨ block = Block2) ∧
(color = Red ∨ color = Blue ∨ color = Green)

Observe that here the sensing result does not depend upon the state of some fluent.
The following domain constraint enforces that every block has exactly one color:

(∀s)(∃!color)Holds(Coloring(block, color), s)

The sensor axiom together with the domain constraint entail, e.g., that Block2 is
green, if it is neither red nor blue. Let the initial state specification include

Holds(On(Block1,Table), S0) ∧Holds(On(Block2,Table), S0) ∧
Holds(Free(Block1), S0) ∧Holds(Free(Block2), S0)∧
(Holds(Coloring(Block1,Green), S0) ∨Holds(Coloring(Block2,Green), S0))

so that we only know that at least one of Block1 or Block2 is green; note that we use
the macro Holds(Free(Block1), s)

def
= ¬∃Block2Holds(On(Block2,Block1), s). Let the

precondition and the effects of moving a block again be axiomatized as in example 2.1:

(∀)Poss(Move(block1, x, y), s1, s2) ≡
Holds(On(block1, x), s1) ∧ x 6= y ∧
Holds(Free(block1), s1) ∧
(Holds(Free(y), s1) ∨ y = Table) ∧
s2 = Do(Move(block1, x, y), s1)

(∀)Poss(Move(block, x, y), s1, s2) ⊃
[(∀f)(f = On(block, y) ∨ (Holds(f, s1) ∧ f 6= On(block, x))) ≡ Holds(f, s2)]

The following ALP illustrates epistemically adequate offline planning with sensing
actions — the goal is to build a tower of height two, with a green block on top:

strategy :- ?(on(X,Y) and on(Y,table) and coloring(X,green)).
strategy :- ?(coloring(X,green) and on(X,table) and free(X)),

?(on(Y,table) and X \= Y and free(Y)), do(move(X,Y)),
strategy.

Put in words, unless we have reached the goal, we either

77

Chapter 3 Action Logic Programs

• identify a green block on the table; or

• stack a known green block atop another block.

Given the query ?- strategy. initially the last rule is not applicable because it
is restricted to non-disjunctive substitutions for epistemically adequate planning.
The first rule is not applicable either. After sensing we obtain two successful sub-
derivations informing us that we can reach our goal no matter by either moving
Block1 atop of Block2 or vice versa. By making the sense fluent in the sensing rule
a variable it is even possible to plan the appropriate sensing actions that ensure that
the goal can be achieved.

In the above example the sense fluent Coloring is not affected by the effect axiom
— it is a static property of the domain. As another example scenario where we sense
dynamic properties of the domain consider an agent that is equipped with a sensor
to identify different blocks: If the agent initially knows that one of two blocks is
located on the table it can infer a disjunctive plan leading to a situation where it
has a block in its gripper. Here the agent can both sense and change the location of
blocks.

3.7 Offline vs. Online Execution of Action Logic Programs

In the context of sensing actions let us make some remarks on the issue of offline
vs. online execution of ALPs. Basically, action logic programs can be used to solve
two complementary tasks: They can be used to control an agent online, where the
agent actually executes the actions that are part of a derivation; or the agent may
use them offline, to infer a plan that helps it achieve its goals.

If we intend to use ALPs for the online control of an agent we can do this by
non-deterministically picking one path in the proof tree of an action logic program.
Essentially, this approach to online agent control is the same as the one taken in
Golog and Flux.

In the case of the CLP(D) calculus the derivations are restricted to non-disjunctive
substitutions, and the constraint rule may not be used at all. These restrictions are
necessary because otherwise in general the agent would not know which action it is
executing, or whether the action is even executable. The agent should behave more
cautiously. Summing up, in the case of online execution, the LP(D) and the CLP(D)
proof calculus really are identical. The resulting proof calculus is sound, but in the
case of action domains that are not query-complete completeness of course does not
hold.

But there is something more to the online execution of ALPs in the presence
of sensing: The sensor axioms enumerate all the possible sensing results, and if we
evaluate a sense fluent against the sensor axiom we obtain a disjunctive substitution.

78

3.7 Offline vs. Online Execution

In the online execution of an ALP, however, the idea is that we evaluate the sense
fluent against the “real world”, not against our axiomatization. The real world
determines a single sensing result that applies.

In the CLP(D) proof calculus this corresponds to considering only a single case of
the disjunctive substitution to continue the derivation with. Unfortunately, if such
a derivation is successful it is not even sound wrt. the domain axiomatization D and
the program P — all that we can say is that it is consistent with D ∪ P. On the
other hand, such a derivation is sound wrt. D ∪ P augmented by the real world; or,
more precisely, D ∪ P augmented by the observed sensing results.

This is a problem shared by all approaches to the online control of agents equipped
with sensors: Beforehand it is impossible to say which sensing results will be ob-
served. But adding an actual sensing result to our formal world model D we obtain a
new world model D′. Because our action theories are based on first order logic, which
is monotonic, in D′ we do not lose any consequences from D — but possibly we get
some new consequences. This is the reason why a derivation in CLP(D) for domains
with sensing is only sound wrt. the program and the action domain augmented by
the sensing results.

Now assume that an action domain contains disjunctive or merely existential in-
formation wrt. some properties of the world: An ALP that is meant for online agent
control may try to ensure with the help of sensing actions that the actual values of
these properties are known at run-time. Observe that for this it is of paramount
importance that the values of fluents mentioned in a sensor axiom never contradict
the agent’s world model.

Let us conclude this section with the remark that the combination of online exe-
cution and the computation rule of negation as finite failure is not unproblematic:
We read negated goals as a goal not being achievable by the execution of actions. In
the online setting this does not seem to make much sense. Hence, for this setting,
negation as finite failure can only safely be used for program atoms that do not
depend on the time-dependent special atoms.

79

4 ALPprolog— LP(D) over Deterministic,
Propositional Fluent Calculus Domains with
Sensing

In this chapter we present ALPprolog1 — an implementation of the ALP framework
atop of action theories in a version of the Fluent Calculus that

• uses (a notational variant of) propositional logic for describing state properties;

• is restricted to actions with ground deterministic effects; and

• includes sensing actions.

The intended application domain for ALPprolog is the online control of agents in
dynamic domains with incomplete information — hence all the remarks on online
reasoning from section 3.7 apply.

ALPprolog is inspired by, and closely related to, dialects of the two prominent
action programming languages Flux [Thielscher, 2005a] (cf. also section 6.2) and
Golog [Levesque et al., 1997] (cf. also section 6.1).

In a sense it covers the middle-ground between special and full Flux. In Special
Flux the expressivity is limited to conjunctions of ground, positive atoms: negated
atoms are expressed using the closed world assumption. ALPprolog also uses a
ground state representation, but on the other hand also admits disjunctive state
knowledge, negation, sensing, and incomplete knowledge (open world semantics). It
does not reach the expressivity of full Flux in that it does not support arbitrary,
possibly non-ground terms, quantifiers, and an explicit notion of knowledge. It
transcends the expressivity of Flux in that it fully supports disjunction — Flux
(depending on the dialect) allows only one negative literal in disjunctions (or none
at all).

From the variant of Golog that supports open-world planning [Reiter, 2001a]
ALPprolog takes the representation of state knowledge via prime implicates. Here,
the major difference is that ALPprolog uses progression whereas Golog uses regres-
sion.

The fragment of the Fluent Calculus that ALPprolog supports is tailored for an
efficient implementation using Prolog list operations — the actual implementation is

1The name refers to both the implementation language Prolog, and the underlying logic
(Propositional Logic).

80

4.1 ALPprolog Programs

based on ECLiPSe Prolog [ECLiPSe Implementors Group, 2009]. One major design
objective for ALPprolog was to both extend the expressivity of Special Flux and to
retain (some of) its practical efficiency.

4.1 ALPprolog Programs

An ALPprolog program is an ALP that respects the following restrictions on the
?(Phi) atoms in the program:

• All occurrences of non-fluent expressions in φ are positive.

• So called sense fluents S(~x) that represent the interface to a sensor may only
occur in the form ?(s(X)). Sense fluents are formally introduced below.

The following will be our running example of a ALPprolog program throughout
this section:

Example 4.1. Consider an agent whose task is to find gold in a maze. For the sake
of simplicity, the states of the environment shall be described by a single fluent (i.e.,
state property): At(u, x) to denote that u ∈ {Agent ,Gold} is at location x. The
agent can perform the action Go(y) of going to location y, which is possible if y is
adjacent to, and accessible from, the current location of the agent. The fluent and
action are used as basic elements in the following agent logic program. It describes
a simple search strategy based on two parameters: a given list of locations (choice
points) that the agent may visit, and an ordered collection of backtracking points.

explore(Choicepoints,Backtrack) :- % finished, if
?(at(agent,X)), ?(at(gold,X)). % gold is found

explore(Choicepoints,Backtrack) :-
?(at(agent,X)),
select(Y,Choicepoints,NewChoicepoints), % choose a direction
do(go(Y)), % go in this direction
explore(NewChoicepoints,[X|Backtrack]). % store the choice made

explore(Choicepoints,[X|Backtrack]) :- % go back one step
do(go(X)),
explore(Choicepoints,Backtrack).

select(X,[X|Xs],Xs).
select(X,[Y|Xs],[Y|Ys]) :- select(X,Xs,Ys).

Suppose we are given a list of choice points C, then the query :- explore(C,[])
lets the agent systematically search for gold from its current location: the first

81

Chapter 4 ALPprolog

clause describes the base case where the agent is successful; the second clause lets
the agent select a new location from the list of choice points and go to this location
(the declarative semantics and proof theory for do(α) will require that the action is
possible at the time of execution); and the third clause sends the agent back using
the latest backtracking point.

Because ALPprolog programs are meant for online execution the programmer
must ensure that no backtracking over action executions occurs, by inserting cuts
after all action occurrences. Observe that this applies to sensing actions, too. It
is readily checked that — after the insertion of cuts — the ALP from example 4.1
satisfies all of the above conditions.

4.2 Propositional Fluent Calculus

In this section we introduce the announced propositional fragment of the Fluent
Calculus. The discussion of sensing is deferred until section 4.3.

For ease of modeling we admit finitely many ground terms for fluents and objects,
instead of working directly with propositional letters. An action domain D is then
made propositional by including the respective domain closure axioms. For actions,
objects, and fluents unique name axioms are included — hence we can avoid equality
reasoning.

The basic building block of both the propositional Fluent Calculus and ALPprolog
are the so-called prime implicates of a state formula φ(s):

Definition 4.1 (Prime Implicate). A clause ψ is a prime implicate of φ if and only
if

• it is entailed by φ;

• it is not a tautology; and

• it is not entailed by another prime implicate.

The prime implicates of a formula are free from redundancy — all tautologies and
implied clauses have been deleted. For any state formula an equivalent prime state
formula can be obtained by first transforming the state formula into a set of clauses,
and by then closing this set under resolution, and the deletion of subsumed clauses
and tautologies.

Prime state formulas have the following nice property: Let φ be a prime state
formula, and let ψ be some clause (not mentioning auxiliary predicates); then ψ is
entailed by φ if and only if it is subsumed by some prime implicate in φ, a fact that
has already been exploited for Golog [Reiter, 2001b, ?]. This property will allow

82

4.2 Propositional Fluent Calculus

us to reduce reasoning about state knowledge in ALPprolog to simple list look-up
operations.

Formally the propositional version of the Fluent Calculus is defined as follows.

Definition 4.2 (Propositional Fluent Calculus Domain). We stipulate that the fol-
lowing properties hold in propositional Fluent Calculus domains:

• The initial state DInit is specified by a ground prime state formula.

• The state formulas φ(s1) in action preconditions Poss(a, s1, s2) ≡ φ(s1)∧ s2 =
Do(a, s1) are prime state formulas.

• The effect axioms are of the form

Poss(A(~x), s1, s2) ⊃∨
k

(Φk[s1] ∧ (∀f)[(
∨
i

f = fki ∨ (Holds(f, s1) ∧
∧
j

f 6= gkj))

≡ Holds(f, s2)]),

where each Φk[s1] is a prime state formula. This implies that existentially
quantified variables that may occur in case selection formulas (cf. definition 2.2)
have been eliminated by introducing additional cases.

• Only so-called modular domain constraints [Herzig and Varzinczak, 2007] may
be included. Very roughly, domain constraints are modular if they can be com-
piled into the agent’s initial state knowledge, and the effect axioms ensure that
updated states also respect the domain constraints. In the Fluent Calculus
this holds if the following two conditions are met: The first condition, (4.1),
essentially says that for every state at some time S which is consistent with
the domain constraints and in which an action A(~x) is applicable, the condi-
tion Φi[S] for at least one case i in the effect axiom for A holds. Condition
(4.2) requires that any possible update leads to a state that satisfies the do-
main constraints. Formally, let S, T be constants of sort Time. For a domain
axiomatization with domain constraints Ddc, precondition axioms DPoss, and
effect axioms DEffects the following must hold for every action A(~x) with effect
axiom (2.2): There exists i = 1, . . . , k such that

|= Ddc[S] ∧ πA[S] ∧ (∃~yi)Φi[S], (4.1)

and for every such i,

|= Ddc[S] ∧ πA[S] ∧ ηi[S, T] ⊃ Ddc[T] (4.2)

An in-depth treatment of modular domain constraints in the UAC can be found
in [?]. The problem with general domain constraints is that they greatly com-
plicate reasoning.

83

Chapter 4 ALPprolog

• Auxiliary time-independent axioms may be included if they can faithfully be
represented in the Prolog dialect underlying the implementation. This deliber-
ately sloppy condition is intended to allow the programmer to use her favorite
Prolog library. However, we stipulate that auxiliary predicates occur only pos-
itively outside of Daux in the action domain Din order to ensure that they can
safely be evaluated by Prolog. They also must not occur in the initial state
formula at all. The update mechanism underlying ALPprolog can handle only
ground effects. Hence, if auxiliary atoms are used in action preconditions, case
selection formulas of effect axioms, then it is the burden of the programmer to
ensure that these predicates always evaluate to ground terms on those variables
that also occur in the action’s effects.

On the one hand clearly every propositional Fluent Calculus domain can be trans-
formed to this form. On the other hand it is well known that in general compiling
away the quantifiers in a state formula can result in an exponential blow-up, as
can the conversion to conjunctive normal form. We believe that the simplicity of
reasoning with prime implicates outweighs this drawback.

Propositional action domains can still be non-deterministic. For example, for
an applicable action two different cases may be applicable at the same time. The
resulting state would then be determined only by the disjunction of the cases’ effects.
What is more, it would be logically unsound to consider only the effects of one of
the cases. For the online control of agents in ALPprolog we stipulate that for an
applicable action at most a single case applies, greatly simplifying the update of the
agent’s state knowledge.

Definition 4.3 (Deterministic Propositional Fluent Calculus). A propositional Flu-
ent Calculus domain is deterministic if the following holds: Let a be an applicable
ground action. Then there is at most one case of the action that is applicable in the
given state.

For example, an action theory is deterministic if for each effect axiom all the cases
are mutually exclusive. Next assume we have an applicable deterministic action with
e.g. two case selection formulas φ(s) and ¬φ(s), where neither case is implied by the
current state. Here, instead of updating the current state with the disjunction of
the respective effects, ALPprolog will employ incomplete reasoning.

4.3 Propositional Fluent Calculus with Sensing

We make the following assumptions concerning sensing: At any one time, a sensor
may only return a single value from a fixed set R of ground terms, the sensing
results. However, the meaning of such a sensing result may depend upon the concrete
situation of the agent.

84

4.3 Propositional Fluent Calculus with Sensing

Example 4.1. (continued) Assume that now one of the cells in the maze contains
a deadly threat to our gold-hunting agent. If the agent is next to a cell containing
the threat she perceives a certain smell, otherwise she doesn’t: The sensing result
indicates that one of the neighboring cells is unsafe; the actual neighboring cells,
however, are only determined by the agent’s current location.

We adopt the following formulation of sensor axioms:

Definition 4.4 (Sensor Axiom). A sensor axiom in a propositional Fluent Calculus
domain is of the form

(∀s, x, ~y)Holds(S(x), s) ≡
∨
R∈R

x = R ∧ φ(x, ~y, s) ∧ ψ(x, ~y, s),

for a ground set of sensing results R. Here φ(x, ~y, s) is a prime state formula that
selects a meaning of the sensing result R, whereas the pure prime state formula
ψ(x, ~y, s) describes the selected meaning. We stipulate that sensor axioms (which
are a form of domain constraint) may only be included if they are modular.

Clearly φ(x, ~y, s) should be chosen such as to denote a property that is uniquely
determined in each state. If auxiliary axioms are used in φ(x, ~y, s) it is again the
burden of the programmer to ensure that these evaluate to ground terms in order
to ensure that a ground state representation can be maintained.

Example 4.1. (continued) The following is the sensor axiom for our gold-hunter:

(∀)Holds(PerceiveSmell(x), s) ≡

x = true ∧Holds(At(Agent, y), s) ∧Neighbors(y, ~z) ∧
∨
z∈~z

Holds(ThreatAt(z), s)

∨

x = false ∧Holds(At(Agent, y), s) ∧Neighbors(y, ~z) ∧
∧
z∈~z
¬Holds(ThreatAt(z), s))

Theoretically, the combination of sensing with the online control of an agent is
quite challenging: For offline reasoning it is enough to consider the disjunction of all
possible sensing results, and this is logically sound. In the online setting, however,
upon the observation of a sensing result we henceforth have to accept this result as
being true; that is, we at runtime add the result to the action theory, something
which is logically unsound. On the other hand, it also does not make sense to
stipulate that the sensing result be known beforehand.

85

Chapter 4 ALPprolog

4.4 Action Theory Representation

We continue by describing how the underlying action theory is represented in ALPprolog.
As basic building block we need a representation for prime state formulas. For nota-
tional convenience we will represent (¬)Holds(f, s) literals by the (possibly negated)
fluent terms only, and, by an abuse of terminology, we will call such a term (¬)f a
fluent literal. A convenient Prolog representation for such a state formula is a list,
where

• each element is either a literal (i.e. a unit clause), or

• a list of at least two literals (a non-unit clause).

In the following we call such a list a PI-list.

Definition 4.5 (Action Theory Representation). Action theories as defined in def-
inition ?? are represented in ALPprolog as follows:

• The initial state is specified by a Prolog fact initial_state(PI-List)., where
PI-List mentions only ground fluent literals. Domain constraints other than
sensor axioms have to be compiled into PI-List.

• For each action a, a Prolog fact action(A,Precond,EffAx). has to be in-
cluded, where

– A is an action function symbol, possibly with object terms as arguments;
– Precond is a PI-list, the action’s precondition;
– EffAx is a list of cases for the action’s effects with each case being a pair

Cond-Eff, where the effect’s condition Cond is a PI-list, and the effects
Eff are a list of fluent literals; and

– all variables in EffAx also occur in Precond.

• If present, auxiliary axioms Daux are represented by a set of Prolog clauses. The
predicates defined in the auxiliary axioms must be declared explicitly by a fact
aux(Aux)., where Aux denotes the listing of the respective predicate symbols.

The sensor axioms are represented as Prolog facts sensor_axiom(s(X),Vals),
where

• s is a sense fluent with object argument X; and

• Vals is a list of Val-Index-Meaning triples, where

– Val is a pair X-result_i, where result_i is the observed sensing result;
– Index is a PI-list consisting of unit clauses; and

86

4.5 Reasoning for ALPprolog

– Meaning is a PI-list, mentioning only fluent literals and only variables
from Val and Index.

The sense fluents have to be declared explicitly by a fact sensors(Sensors).,
where Sensors is a listing of the respective function symbols. This is necessary
in order to distinguish sense fluents, ordinary fluents, and auxiliary predicates in
PI-lists.

4.5 Reasoning for ALPprolog

Reasoning in ALPprolog works as follows: For evaluating the program atoms we
readily resort to Prolog. The reasoner for the action theory is based on the principle
of progression. Setting out from the initial state, upon each successful evaluation of
an action’s precondition against the current state description, we update the current
state description by the action’s effects.

Reasoning about the action comes in the following forms:

• Given a ground applicable action a, from the current state description φ(s1)
and the action’s positive and negative effects compute the description of the
next state ψ(s2) (the update problem).

• Given a description φ(s) of the current state, check whether {φ(s)} ∪ Daux �
ψ(s), where ψ(s) is some state formula in s, but not a sense fluent (the entail-
ment problem).

• For a sensing action, i.e. a query Holds(S(x), s), integrate the sensing results
observed into the agent’s state knowledge (the sensing problem).

In the following we consider each of these reasoning problems in turn.

4.5.1 The Update Problem

It turns out that solving the update problem is very simple. Let State be a ground
PI-List, and let Update be a list of ground fluents. The representation of the next
state is then computed in two steps:

(1) First, all prime implicates in State that contain either an effect from Update,
or its negation, are deleted, resulting in State1.

(2) The next state NextState is given by the union of State1 and Update.

87

Chapter 4 ALPprolog

Starting from a ground initial state only ground states are computed.
The correctness of this procedure can be seen e.g. as follows: In [Liu et al., 2006,

Drescher et al., 2009] algorithms for computing updates in a Fluent Calculus based
upon Description Logics have been developed. The above update algorithm consti-
tutes a special case of these algorithms.

4.5.2 The Entailment Problem

When evaluating a clause ψ against a ground prime state formula φ, ψ is first split
into the fluent part ψ1, and the non-fluent part ψ2. It then holds that ψ is entailed
by φ if there is a ground substitution θ such that

• ψ1θ is subsumed by some prime implicate in φ; or

• some auxiliary atom P (~x)θ from ψ2 can be derived from its defining Prolog
clauses.

Computing that the clause ψ1 is subsumed by φ can be done as follows:

• If ψ1 is a singleton, then it must be a prime implicate of φ (modulo unification).

• Otherwise there must be a prime implicate in φ that contains ψ1 (modulo
unification).

Hence the entailment problem for ALPprolog can be solved by member, memberchk,
and subset operations on sorted, duplicate-free lists.

The following example illustrates how reasoning in ALPprolog can be reduced to
simple operation on lists. It also illustrates the limited form of reasoning about
disjunctive information available in ALPprolog:

Example 4.2 (Disjunctions and Substitutions in ALPprolog). Assume that the cur-
rent state is given by [[at(gold,4),at(gold,5)]]. Then the query ?([at(gold,X)])
fails, because we don’t consider disjunctive substitutions. However, on the same cur-
rent state the query ?([[at(gold,X),at(gold,Y)]]) succeeds with X=4 and Y=5.

4.5.3 The Sensing Problem

Sensing results have to be included into the agent’s state knowledge every time a
sensing action is performed, i.e. a literal ?(s(X)) is evaluated. This works as follows:

• First we identify the appropriate sensor axiom sensor_axiom(s(X),Vals).

• Next we identify all the [X-result_i]-Index-Meaning triples in Vals such
that result_i matches the observed sensing result, and unify X with result_i.

88

4.6 Soundness of ALPprolog

• After that we find the unique Index-Meaning such that the current state
entails Index.

• Finally, we adjoin Meaning to the current state and transform this union to a
PI-list.

4.6 Soundness of ALPprolog

At the end of section 4.3 we have already mentioned that adding sensing results
to the action theory at runtime makes the subsequent reasoning logically unsound
wrt. the original program plus action theory. If we add the set of sensing results
observed throughout a run of an ALPprolog program, however, then we can obtain
the following soundness result:

Proposition 4.1 (Soundness of ALPprolog). Let P be a ALPprolog program on top
of an action domain D. Let Σ be the union of the sensor results observed during a
successful derivation of the ALPprolog query % with computed answer substitution θ.
Then D ∪ P ∪ Σ � %θ.

Proof. (Sketch) SLD-resolution is sound for ordinary program atoms. (∃)Holds(φ),
where φ is not a sense fluent, is only derived if there is a substitution θ such that
D � (∀)Holds(φ)θ. For sense fluents we need the observed sensing result as an
additional assumption.

4.7 Evaluation

Let us now turn to the evaluation of ALPprolog. First we compare it to Special
Flux, on a very simple action domain. We then evaluate ALPprolog’s performance
against that of Golog and Flux on the well-known Wumpus world. Finally, we take
a glimpse at promising future application domains for ALPprolog.

4.7.1 Example I — The Mailbot Domain

The protagonist of the mailbot domain [Thielscher, 2005a] is a robot that carries
packages. It lives in a very simple world: All the rooms are linearly arranged into an
aisle. The robot can perform three actions: go up/down the aisle, pickup a package,
or deliver it. The domain is very simple — it can be represented by a conjunction of
ground literals. We use this example for two purposes: First it serves to illustrate
how a real action domain is represented in ALPprolog, with the exception of sensor
axioms — these will be illustrated in the next example. Second, we use it to compare
the performance of ALPprolog and Special Flux.

89

Chapter 4 ALPprolog

Example 4.3 (Mailbot Domain in ALPprolog). We can specify the simple mailbot
domain in ALPprolog as follows:

initial_state([at(room1), empty(slot1), request(room1,room2),
connected(room1,room2), connected(room2,room1)]).

action(deliver(Slot),
[[at(Room), carries(Slot,Room)]-
[not(carries(Slot,Room)), empty(Slot)]]).

action(pickup(Slot, Room),
[[empty(Slot), at(Room2), request(Room2,Room)]-
[not(request(Room2,Room)), not(empty(Slot)),
carries(Slot1,Room)]]).

action(go(Room),
[[at(Room2), connected(Room2,Room)]-
[not(at(Room2)), at(Room)]]).

We omit the simple ALP that makes the robot fulfill all requests.

Our experiments comparing the performance of ALPprolog to that of Special Flux
have led to the following conclusions: The run-time of the former is a small multiple
of that of the latter if we explicitly include all the negative information — something
which strictly speaking is is not necessary, though. Most importantly, ALPprolog
has proven its scalability.

The mailbot domain has also been used in [Thielscher, 2004] to evaluate the perfor-
mance of Special Flux wrt. that of Golog. Because ALPprolog behaves quite similar
to Special Flux, the conclusions drawn there also apply to ALPprolog: The more
actions have to be executed to reach the goal, the more the progression approach of
ALPprolog gains over the regression approach of Golog.

4.7.2 Example II — The Wumpus World

The Wumpus World [Russell and Norvig, 2003] is a well-known challenge problem
in the reasoning about action community. It consists of a grid-like world: cells may
contain pits, one cell contains gold, and one the fearsome Wumpus. The agent dies
if she enters a cell containing a pit or the Wumpus. But she carries one arrow so
that she can shoot the Wumpus from an adjacent cell. If the agent is next to a
cell containing a pit (the Wumpus), she can detect that one of the surrounding cells
contains a pit (the Wumpus), but doesn’t know which one: She perceives a breeze
if she is in a cell next to a pit, and she perceives a stench if she is in a cell next to
the Wumpus. She knows the contents of the already visited cells — in particular

90

4.7 Evaluation

she can detect the gold if she is in the same cell. Getting the gold without getting
killed is the agent’s goal. See figure 4.12 for an example scenario.

Figure 4.1: A Wumpus World

Example 4.4 (Sensor Axioms in ALPprolog). Using the Wumpus world we illustrate
how sensor axioms are modeled in ALPprolog— the possible outcomes of sensing
whether an adjacent cell contains a pit are represented as follows :

sensor_axiom(breeze(X),
[[X-true] -
[at(agent,Y),neighbors(Y,[C1,C2,C3,C4])] -
[[pit(C1),pit(C2),pit(C3),pit(C4)]],

[X-false] -
[at(agent,Y),neighbors(Y,[C1,C2,C3,C4])] -
[neg(pit(C1)),neg(pit(C2)),neg(pit(C3)),neg(pit(C4))]

]).

If the agent senses a breeze, i.e. breeze(true), then we add the information that
there might be a pit in each of the four neighboring cells [C1,C2,C3,C4] to the
agent’s current state knowledge. Otherwise we include for each of the neighboring
cells that it does not contain a pit.3

2The figure is courtesy of M. Thielscher
3For ease of modeling we assume each cell has four neighbors — the cells on the border do neither

contain pits, nor the Wumpus.

91

Chapter 4 ALPprolog

We also use the Wumpus world to evaluate the performance of ALPprolog against
that of full Flux: The Wumpus world admits a model that is supported by both
languages. In [Thielscher, 2005b] a modeling of the Wumpus world in Flux has been
presented. Our modeling is very similar, the only difference being that we abstract
from the direction the agent is facing: We thus do not have to perform “turn”-
actions, the agent can move to any adjacent cell. Once the agent knows in which
neighboring cell the Wumpus is located she shoots the arrow in the right direction
— also without turning in the right direction.

We use two different models: In one we include all the connections between differ-
ent cells (i.e. expressions of the form Connected(cell1, cell2)) into the agent’s state
knowledge — this serves the purpose of seeing how ALPprolog and Flux handle large
state representations. But we can also treat the connections as auxiliary predicate
defined in a background theory — this model is easier to handle for both ALPprolog
and Flux. We call the first model the “big” Wumpus world, and the second the
“small” one.

In table 4.1 we show the respective run-times for some small solvable Wumpus
worlds, and the overall number of actions required to achieve the goal. In principle
it is hard to ensure that the agent will use the same sequence of actions to achieve
a goal, no matter whether the underlying language is ALPprolog or Flux. For our
model of the Wumpus world, however, it turned out that initially sorting the state
representation (and the connections) is enough to ensure that the same course of
action is taken in both settings.

Size ALPprolog Flux Actions
4× 4 0.06 s 0.77 s 26
8× 8 0.57 s 20.63 s 96

16× 16 36.89 s 622.04 s (≈ 10 m) 372
32× 32 1655.48 s (≈ 27.5 m) 30836.21 s (≈ 8.5 h) 1559

Table 4.1: Run-times for the Wumpus World — Small Model.

We can make several observations: On this model of the Wumpus world ALPprolog
is about twenty times faster than Flux for the 16× 16 and the 32× 32 settings; for
the 8× 8 the factor is more than thirty. In this model the memory requirements of
ALPprolog and Flux were very similar. For the biggest models both languages used
less than 100 MB.

In table 4.2 we show the respective results for the same solvable Wumpus worlds,
using the “big” model.

We can make similar observations: Overall, ALPprolog is even more efficient than
Flux when the big Wumpus world model is used. Moreover it scales about as well

92

4.7 Evaluation

Size ALPprolog Flux Actions
4× 4 0.07 s 2.11 s 26
8× 8 1.14 s 101.51 s 96

16× 16 55.59 s 4807.37 s (≈ 80 m) 372
32× 32 2582.83 s (≈ 43 m) 307421.21s (≈ 3.5 d) 1559

Table 4.2: Run-times for the Wumpus World — Big Model.

as Flux if we look at the transition from the 8 × 8 world to the 16 × 16 world.
Plan length increases by a factor of about four when moving to a bigger world, and
reasoning time increases by a factor of about fifty. The amount of memory needed
by Flux and ALPprolog to solve these Wumpus worlds does not differ much: for
the bigger worlds about one hundred megabytes are used. For the 32 × 32 world
ALPprolog needs about 120 MB, whereas Flux uses up to 300 MB. In ALPprolog
the run-time again increases by a factor of about fifty, whereas for Flux it increases
by a factor of about sixty-five. On this model, Flux takes longer than ALPprolog to
solve the problem by roughly two orders of magnitude.

Overall, ALPprolog is more efficient at solving this essentially propositional model
of the Wumpus world. Both Flux and ALPprolog scale about equally well if we look
at the size of the playing field. But for Flux it is more difficult to cope with big state
representations. This shows when we compare the increase of the run-time between
the small and the big model of Wumpus worlds of the same size: For ALPprolog
the run-time is increased by a factor of about two independent from the size of the
world, for Flux it is increased by a factor between five (8× 8) and ten (32× 32).

In [Thielscher, 2005a] the performance of Flux has thoroughly been evaluated
against that of Golog. The scenario used for this evaluation featured a robot situated
in an office environment, that is supposed to clean the offices, but not to disturb
the workers. To this end, the robot can sense whether one of the adjacent offices is
occupied. The characteristics of this scenario are sufficiently similar to those of the
Wumpus world to transfer some of the observations. First of all, on this cleanbot
domain Flux performed consistently better than Golog. Moreover, and as for Special
Flux, the performance of full Flux gains continuously over that of Golog the more
actions have to be performed. Since ALPprolog scales about as well as Flux, and
runs faster, these observations also apply to ALPprolog.

In [Thielscher, 2005a] it has been conjectured that the performance of Flux is
superior to that of Golog because of two things: First, Flux uses progression instead
of the regression used by Golog. Second it has been argued that the constraint solving
in Flux is linear, whereas reasoning with prime implicates in Golog is NP-complete.
The performance of ALPprolog, however, seems to imply that this second argument

93

Chapter 4 ALPprolog

does not hold. For the same dynamic domain reasoning with prime implicates in
ALPprolog does not seem to scale worse than reasoning with the constraints of Flux.

Let us in this context also point out the following: If the formula representing
the agent’s state knowledge is built on ground literals only (as in our model for the
Wumpus world), then the Flux constraint solver transforms it into a representation
that contains exactly the prime implicates of the formula. Thus for the Wumpus
world both Flux and ALPprolog essentially use the same state representation.

4.7.3 Extension to Offline Planning

It is straightforward to extend ALPprolog so that it can be used to compute un-
conditional plans: We simply allow backtracking over actions in a derivation, and
include an uninstantiated do(A) literal in some program clause.

For conditional planning, however, something more is needed: We need to im-
plement a mechanism that computes a most general disjunctive substitution on the
action variable A in the literal do(A). For this we have to find a set of action pre-
conditions φi such that both

•
∨
i φi, and

• no proper subset of these action preconditions

is entailed by the current state. If the action domain features sensors then we will
have to implement epistemically adequate planning as discussed in section 3.6.2: We
allow disjunctive substitutions only on sense fluents, not on action variables, making
the task of finding a suitable disjunctive substitution Θ easier.

Once we have found such a disjunctive substitution Θ we are faced with the
reasoning by cases that the CLP(D) proof calculus employs. This can be done
by testing whether each of the substitutions θ ∈ Θ together with the respective
augmented action domain results in a successful derivation. We leave the actual
implementation of this approach to epistemically adequate planning as future work.

If we allow for disjunctive substitutions on action variables in ALPprolog then
there is no reason why we should not allow them on object variables, too. However,
this will make the implementation of reasoning with the prime implicates more
expensive: Assume a PI-list [[f(a),f(b)]] together with a query ?- ?(f(X))..
In the current implementation of ALPprolog this query will simply fail — we are
looking for ordinary substitutions only. If we want to extend ALPprolog to offline
planning we have to change this behavior — but this will make reasoning more
expensive.

94

4.7 Evaluation

4.7.4 Application in General Game Playing

General Game Playing [Genesereth et al., 2005] is a recent AI research area aiming
at the integration of various AI research strands: A program (also called a player)
is given an axiomatization of the rules of a game. This game may be single- or
multi-player. The player then computes a strategy/heuristic that it uses to play and
hopefully win the game.

The main challenge of General Game Playing consists of constructing a suitable
heuristics. However, the player also needs a means to represent and reason about
the state of the game, and the changes effected by the players moves. One successful
player is Fluxplayer [Schiffel and Thielscher, 2007] which, as the name suggests, uses
Flux for this task. However, up to now all the games played in General Game Playing
have been restricted to complete information — there is no need for disjunctive
knowledge or open world semantics [Love et al., 2008]. Accordingly, Fluxplayer is
based on Special Flux. However, there is currently work going on to broaden the class
of games that can be described in the Game Description Language to incomplete and
disjunctive information. Hence, ALPprolog might prove useful for a future version
of Fluxplayer.

4.7.5 Availability of ALPprolog

The source code for ALPprolog together with the modeling of the Wumpus world
can be obtained online at http://alpprolog.sourceforge.net/. ECLiPSe Prolog
can be obtained from http://www.eclipse-clp.org/.

95

http://alpprolog.sourceforge.net/
http://www.eclipse-clp.org/

5 Action Logic Programs Based on Description
Logic

In this chapter we describe an implementation of a fragment of the ALP framework
for the online control of agents where the reasoning about actions is based on De-
scription Logic reasoning, and in particular on the ABox updates first introduced in
[Liu et al., 2006].1 To this end we introduce a fragment of the Fluent Calculus in
the UAC where

• the initial state is specified by a DL ABox;

• upon encountering a do-literal in the derivation the current state description
is progressed via ABox update algorithms; and

• the evaluation of ?-literals is based on DL consistency checking/query answer-
ing.

Moreover, domain constraints can be specified by acyclic TBoxes, and action
effects are described by ABoxes, too.

Such an implementation covers exciting new territory for implemented action lan-
guages: Most existing implementations are propositional and/or based on the closed
world assumption. In contrast, by using ABox updates for reasoning about the
action domain we obtain both open world semantics and expressivity that goes con-
siderably beyond classical propositional logic.

This chapter is organized as follows: In section 5.1 we define what Description
Logic based action domains in the UAC look like. For this we use the following
idea: In [Drescher and Thielscher, 2007] we have given a semantics for ABox up-
date in an old version of the Fluent Calculus — any ABox update in the sense
of [Liu et al., 2006] can equivalently be expressed as an effect axiom in this Fluent
Calculus. In section 5.1 below we give a version of this result where we identify a
fragment of the UAC (and also of the Fluent Calculus expressed in the UAC) for
which the ABox update algorithms from [Liu et al., 2006] can be used as a progres-
sion mechanism for the initial state. This result allows to use an implementation of
ABox update as a reasoning method in the ALP framework.

In section 5.2 we look at the tasks that have to be solved in order to implement
the ALP framework atop of logical ABox update: In a first step we show how to
exploit query answering in section 5.2.1.

1We shall also refer to these ABox updates as logical updates.

96

5.1 ABox Update in the Unifying Action Calculus

When implementing ABox update it quickly became clear that a direct implemen-
tation of the respective algorithms from [Liu et al., 2006] (as recapitulated in section
2.4.2) is unworkable. Hence the subsequent section 5.2.2 is devoted to presenting
the optimizations we have used in our implementation, and we assess the resulting
performance in section 5.2.3. In general, logical ABox updates can only be expressed
in Description Logics that cannot directly be handled by current DL reasoners. In
section 5.2.4 we present some reasoning methods that do work on updated ABoxes.
We evaluate their performance in 5.2.5.

In a final section 5.3 we draw some conclusions wrt. the implementation of the
ALP framework atop of Description Logic based action domains.

5.1 ABox Update in the Unifying Action Calculus

In this section we introduce a fragment of the UAC where reasoning is reduced to DL
reasoning and to the computation of ABox updates in the sense of [Liu et al., 2006].
The fragment is parametric in the underlying DL — the only requirement according
to [Liu et al., 2006] is that the respective DL admits ABox updates based on the
possible models approach of [Winslett, 1988]. Hence, in the following we only speak
of an ABox, Boolean ABox, TBox, etc. without referring to a particular DL.

5.1.1 Correspondence between FO and State Formulas

We start with a simple technical observation: There is a satisfiability-preserving
mapping from first order sentences to state formulas of the UAC. This mapping will
subsequently allow us to treat DL formulas as shorthand for the formulas used to
axiomatize action domains in the UAC.

This mapping is based on the following observations: Clearly, for any first order
language L with equality we can define a unifying action calculus signature that
contains exactly one function symbol Fi of sort fluent for every predicate symbol
Pi ∈ L (except equality). Moreover, its terms ~t of sort object are precisely the terms
of L. Next define the mapping from first order sentences to UAC state formulas:

Definition 5.1 (Mapping FOL Sentences to State Formulas). The mapping τ1 takes
first order sentences φ in L to state formulas φ(s), by replacing every occurrence of
an atom Pi(~t) in φ with Holds(Fi(~t), s), where s is a variable of sort time. The map-
ping is extended to sets of first order sentences by mapping them to the conjunction
of their elements.

It is not hard to see that an arbitrary FOL sentence φ is consistent/satisfiable if
and only if τ1(φ) is. Hence, and since DLs can be regarded as fragments of first
order logic, we have obtained a correspondence between DL ABoxes, TBoxes, etc.,
and UAC state formulas φ[s] uniform in the free time-variable s.

97

Chapter 5 DL-based Action Logic Programs

5.1.2 ABox Update Action Domains

We next show how ABoxes, TBoxes, and ABox updates can be used as shorthand
for action domains in the UAC. First, recall that an action domain D consists of

• an initial state axiom DInit,

• a set of precondition axioms DPoss,

• a set of effect axioms DEffects,

• a set of domain constraints Ddc, and

• foundational axioms Daux.

All these can also be specified using ABoxes, TBoxes, and ABox updates by
exploiting the following observations:

• The domain constraints Ddc can be specified by a TBox T : Let φ(s) = τ1(T),
then ∀sφ(s) is the corresponding domain constraint.

• The initial state DInit can be specified by an ABox A: in the corresponding
state formula φ[s] = τ1(A) we instantiate s to S0. Without loss of generality
we assume that the ABox DInit does not contain concepts defined in the TBox.

• Foundational axioms Daux as usual contain an axiomatization of the situa-
tions, and unique name axioms for the actions that we introduce below. But
recall that ABox update has to be parametrized by a set EQ of (dis-)equalities
between individual names (cf. section 2.4.2). Accordingly the corresponding
(dis-)equality axioms are included in the foundational axioms Daux.

It is worth pointing out that acyclic TBoxes allow a natural model of sensor
axioms. For example, we can write

SF ≡ {v1} u C1 t . . . t {vn} u Cn,

to specify the meaning of the n different possible sensing results vn.
Next we turn to the effect axioms, and the respective precondition axioms. First

recall that a conditional ABox update is a finite set of pairs φ/ψ, where the assertion
φ is the condition part and the literal ψ the conditional effect. Concepts defined in
the TBox may be used in the condition part φ, but not in the effect ψ. Assume
given a conditional update U : First we associate with every such update an action
constant Action. The precondition of each of these actions can again be specified
by an ABox A that corresponds to the UAC precondition axiom

Poss(Action, s1, s2) ≡ τ1(A) ∧ s2 = Do(Action, s1).

98

5.1 ABox Update in the Unifying Action Calculus

We now turn to the construction of an effect axiom corresponding to the update
U = {φ1/ψ1, . . . , φn/ψn}. Define the set of conditional effects CE1 = {φj/ψj |
φj/ψj ∈ U}∪ {¬φj/nil | φj/ψj ∈ U} and let CE2 be the set of all subsets of CE1 that
are maximally consistent (in the propositional sense) with regard to the condition
part φj . Note that the cardinality of CE2 will be exponential in the size of U .
Intuitively the set CE2 represents all the possible cases of a conditional update.
Next we stipulate that the corresponding effect axiom in the UAC be of the form

Poss(A, s1, s2) ⊃∨
k

(Φk[s1] ∧ (∀f)[(
∨
i

f = fki ∨ (Holds(f, s1) ∧
∧
j

f 6= gkj)) (∗)

≡ Holds(f, s2)]),

where

• k ranges over all the possible cases CE2;

• Φk[s1] corresponds to the condition part of the respective case; and

• all the positive and negative effects (fki and gki) are ground fluents, corre-
sponding to the effects of the case (unless the effect is nil).

So for each conditional update U from CE2 (i.e. a case) in the UAC effect axiom we
set Φ to the UAC representation of the condition part of U , i.e.

∧
{τ1(φ) | φ/ψ ∈ U}.

For the effects we first make sure that those effects mentioned by U take place.
But in addition we also have to ensure that the effects respect the TBox/domain
constraints. Overall this is achieved as follows:

• First set δ+
j [s1]′ (or δ−j [s1]′, respectively) to the disjunction of the negative

effects (or the positive effects, respectively) of U , i.e. set, e.g., δ−j [s1]′ to∨
{¬ψ | φ/ψ ∈ U and ψ 6=nil}

f = τ2(ψ),

where the mapping τ2 maps FO/DL literals (¬)Pi(~t) to the corresponding UAC
terms Fi(~t).

• Then extend these preliminary positive and negative effects as follows, where
C is any concept name defined in the TBox T and A is the “effect ABox”∧
{ψ | φ/ψ ∈ U and ψ 6= nil}:
– Add to δ+

j [s1]′ all fluents τ2(C(a)) where A ∪ T � C(a).

– Add to δ−j [s1]′ all fluents τ2(C(a)) where A ∪ T � ¬C(a).

99

Chapter 5 DL-based Action Logic Programs

Observe that all the different cases Φ[s1] in the effect axiom are mutually exclu-
sive. In particular the effect axioms are deterministic in the sense of definition 3.8.
Observe also that the form of the effect axiom satisfies the conditions that identify
Fluent Calculus effect axioms in the UAC. This finishes the construction of an effect
axiom corresponding to a conditional ABox update.

Let us summarize how an action domain based on ABox updates is to be repre-
sented in the UAC:

Definition 5.2 (ABox Update Action Domain). An action domain in the UAC that
is based on DL ABox update (henceforth denoted DDL) is specified by the following:

• an ABox A, as shorthand for the initial state formula;

• a set EQ of (dis-)equalities between individual names;

• a finite set of action pairs < Ai,Ui >, where Ai is an ABox, and Ui an ABox
update; and

• an acyclic TBox T , as shorthand for the domain constraints.

5.1.3 UAC Semantics for ABox Update

We still need to show that the mapping from conditional updates to UAC effect
axioms is correct. The following proposition tells us that this indeed is the case:

Proposition 5.1 (UAC Semantics for ABox Update). Let an action domain DDL be
given. Moreover, let Ui be a conditional update such that DDL � Poss(Actioni, s1, s2).
For any model I of DDL, the relation between the set of fluents that hold at s1 in
I and the set of fluents that hold at s2 in I and the relation between an original
interpretation and an updated interpretation of an ABox (cf. definition 2.16) coin-
cide.

Sketch. The proof is based on two observations: First, in the respective effect axiom
Ψ[s1, s2] of the form (∗) exactly one case ηj [s1, s2] is satisfied by I. Second, the effect
axiom correctly captures the semantics of ABox update because it axiomatizes the
relationship between what held prior to the actions execution and what holds after
its execution as

(∀f) [δ+
j [s1] ∨ (Holds(f, s1) ∧ ¬δ−j [s1]) ≡ Holds(f, s2)],

where δ+
j [s1] and δ−j [s1] enumerate the positive and negative effects.

100

5.2 Implementing ALPs atop ABox Update

5.1.4 Modularity of ABox Update Action Domains

As discussed in section 2.3.4 the modularity of action domains ensures that there
is no “bad” interaction between the different types of axioms. In particular, this
is important for the implementation of action programming languages because rea-
soning about the action domain can be reduced to reasoning about the appropriate
axioms instead of the complete axiomatization. Fortunately, modularity holds for
ABox update action domains under a simple condition:

Proposition 5.2 (Modularity of ABox Update Action Domains). If the equality
theory EQ underlying an ABox update action domain DDL is the unique name as-
sumption then DDL is modular.

The construction of effect axioms corresponding to ABox updates ensures that
whenever an action is possible then at least one of the effect cases applies. The same
construction also ensures that no implicit effects or preconditions are entailed by
the TBox. If all objects have unique names the underlying equality theory cannot
cause implicit effects either. For our purposes the unique name assumption is not
a restriction at all since for ALPs we already stipulate that all objects have unique
names.

5.2 Implementing ALPs atop ABox Update

In this section we describe our work on implementing LP(DDL) and CLP(DDL) —
(constraint) logic programming over action domains that are based on ABox update.
The implementation consists of three components:

• For the evaluation of program atoms we can use existing mature Prolog tech-
nology.

• HOLDS atoms are evaluated against the ABox describing the respective world
state.2

• The evaluation of Poss atoms consists of two steps: First we evaluate the
action’s precondition against the current ABox. If the precondition is satisfied
we update the current ABox with the action’s effects to a new ABox and make
this the current ABox.

Recall that defined concept names in action domains DDL may only be used in
action preconditions, and the condition of a conditional effect, but not in the initial
ABox, or an effect itself. Because in addition ABox update action domains are
modular we can take the following approach to reasoning:

2Due to the leftmost computation rule of Prolog, and as in ALPprolog, for this we can always use
the “current” ABox.

101

Chapter 5 DL-based Action Logic Programs

• Initially we verify that the initial ABox A does not contradict the domain
constraints (TBox T).

• We evaluate action preconditions, state properties from the ALP, and condi-
tions of effects wrt. the knowledge base (A, T).

• We do not add the action’s effects concerning defined concept names to the
updated ABox A′. It is safe to simply evaluate queries that mention defined
concept names against the knowledge base (A′, T).

Recall that all the actions in Poss atoms are constants in DDL. If we make the ad-
ditional, natural assumption that the state properties in HOLDS atoms are ABoxes
then in the evaluation of the special atoms there are no substitutions at all, and
hence we can use the LP(D) proof calculus.

However, for applications this approach may prove a hindrance: Assume we are
interested in an instance of the concept C. Instead of forcing the programmer
to check for every individual name i in the domain whether C(i) is entailed by the
current ABox, we want to be able to ask whether there is some individual i such that
the current ABox entails C(x){(x/i)}: In short, we want to exploit query answering.
A similar argument can be made for the usefulness of parametric actions. However,
DL based action domains are unlikely to be query-complete: expressing disjunctive
and existential information is a strong-point of DLs. Hence, we cannot use the LP(D)
calculus for a complete implementation: For this we have to resort to the CLP(D)
proof calculus instead. If we are only interested in the online execution of programs
we can stick with the LP(D) calculus.

The rest of this section is organized as follows:

• First, we generalize ABox update action domains to query answering.

• Next we describe implementation techniques that proved useful in the compu-
tation of updated ABoxes.3

• Then we describe techniques that can be used to reason with updated ABoxes
— standard DL reasoners will not do because updated ABoxes may contain
the @-constructor, complex roles or Boolean combinations of assertions.

5.2.1 Query Answering for Action Domains DDL

As discussed above, from a practical perspective, exploiting query answering tech-
niques is desirable. However, the alert reader will have noticed that the above
definition 5.2 of an ABox update action domain DDL does not feature parametric

3Some of this material has been presented in [Drescher et al., 2009].

102

5.2 Implementing ALPs atop ABox Update

actions. In this section we generalize the action domains DDL accordingly. To this
end we first introduce ABox patterns:

Definition 5.3 (ABox Pattern). An assertion pattern is an expression of the form
r(x, y), r(x, i), r(i, x) or C(x) where x, y are variables. An ABox pattern A(~x) is a
finite set of ABox assertions or assertion patterns, where ~x denotes all the variables
from the assertion patterns. An ABox update pattern is a set of pairs φ(~x)/ψ(~x),
where φ(~x) is an assertion pattern, and ψ(~x) is a literal assertion pattern. Finally,
an ABox action pattern is a term Actioni(~x) where ~x is a vector of variables.

Next we generalize the definition of an ABox update action domain DDL by in-
cluding ABox patterns and parametric actions:

Definition 5.4 (ABox Update Action Domain — New Version). Henceforth, by
DDL we denote an action domain in the UAC that is specified by the following:

• a finite set of action triples < Actioni(~x),Ai(~x),Ui(~y) >, where

– Actioni(~x) is an ABox action pattern;
– Ai(~x) is an ABox pattern (the action precondition); and
– Ui(~y) is an ABox update pattern, where ~y is contained in ~x.4

• an ABox A(the initial state), a set EQ of (dis-)equalities between individual
names (the underlying equality theory), and an acyclic TBox T (the domain
constraints) — all as before.

Let us point out that the UAC semantics for ABox update is readily generalized
to this notion of DDL by speaking of a ground instance of an ABox action pattern
in proposition 5.1.

In ALPs built atop DDL, ABox patterns will serve as the state properties in
HOLDS-atoms, just as ABox action patterns will be used by Poss-atoms. However,
for this definition of an ABox update action domain DDL, we may be confronted with
actions that are applicable, yet we cannot compute the resulting updated ABox.
Consider the following example:

Example 5.1 (Variables in ABox Update). Let the initial state be specified by A =
{a : ∃r.C} and consider an action triple

< Action(x), {r(a, x), C(x)}, {¬C(x)} > .

Clearly, the action precondition (∃x)r(a, x)∧C(x) is entailed by A. However, ABox
update cannot cope with variable effects.

4This restriction ensures that for an applicable ground action we can also compute the updated
ABox.

103

Chapter 5 DL-based Action Logic Programs

Hence, in an implementation of ALPs atop DDL we restrict the substitution rule
of the CLP(D) calculus to ground, but possibly disjunctive, substitutions. The
constraint rule is restricted to the evaluation of ABoxes, not ABox patterns, for
similar reasons. These two restrictions identify the fragment of CLP(D) that an
implementation based on ABox update can maximally cover.

In practice it is even advisable to restrict the CLP(D) to ground, non-disjunctive
substitutions: We have not found a sufficiently efficient method for obtaining the
disjunctive substitutions that the CLP(D) proof calculus calls for (cf. the discussion
in section 5.2.4 below).

This is especially sad because the notion of a disjunctive substitution together
with the CLP(D) calculus constitute a neat generalization of ABox update to dis-
junctive effects: Consider, e.g., an ALP atom Poss(A(~x), s1, s2) such that DDL �
Poss(A(~x), s1, s2)Θ with disjunctive substitution Θ. The reasoning-by-cases ap-
proach taken in the CLP(D) approach now ensures that the deterministic ABox
update algorithm that we implemented suffices. Hence we can do conditional plan-
ning even if the ABox update algorithms do not support disjunctive effects.

If we further refrain from using the constraint rule then essentially we get sound
derivations in LP(D) over an action domain that probably is not query-complete.
Then, however, our implementation cannot be used for conditional, but only for
conformant planning.

5.2.2 Implementing ABox Update

Our implementation of ABox update is based on the respective constructions reca-
pitulated in section 2.4.2. Hence, our implementation supports the DLs ALCO@

and ALCIO@, or ALCO+ and ALCIO+, respectively. In principle the construction
of updated ABoxes from [Liu et al., 2006] also works on the extension of these DLs
with qualified number restrictions, that is on ALCQIO@ and ALCQIO+. With
qualified number restrictions we can, e.g., express that some individual violates the
one-child-policy of China in the form of the following assertion:5

someone :≥ 2 hasChild.>.

But as before, in the following we will not address the case of qualified number
restrictions. The reason for this is twofold:

• For ALCQIO@ the construction of updated qualified number restrictions in-
volves a lot of case distinctions (cf. [Liu et al., 2006]), and hence results in
updated ABoxes so huge that they cannot be managed in practice.

5We assume marital fidelity, and ignore the issue of multiples.

104

5.2 Implementing ALPs atop ABox Update

• For ALCQIO+ in turn we could not find a reasoner that directly supports
both qualified number restrictions (or, equivalently, counting quantifiers) and
the Boolean role constructors. If we compile away the qualified number re-
strictions to first order logic with equality we face two difficulties: The result
of the compilation is outside of the two variable fragment with equality that
is known to be decidable [Pratt-Hartmann, 2005] — we need more variables.
Hence decision procedures for FOL2 cannot directly be applied. Moreover,
the compilation substantially increases the formula size.

As a matter of fact, our implementation does support the update of ABoxes with
qualified number restrictions. However, the resulting ABoxes cannot be handled in
practice for reasons given above, and hence, in this thesis, we did not recall the
respective material.

Our prototypical implementation of ABox update also covers only unconditional
updates. This restriction is motivated by the observation that it is already difficult
to control the non-determinism present in unconditional ABox updates. By this
latter non-determinism we mean the following case distinction for unnamed objects
in the ABox: Is the object affected by the update, or not?

Moreover the usage of the unique name assumption as underlying equality theory
for ABoxes is mandatory if we want to build ALPs on top of ABox update, because
we chose to avoid equational unification in our proof calculi (cf. section 3.3).

Next we outline techniques that we have found useful for the implementation of
ABox update. We start with a simplification of the definition of an updated ABox.
Recall, that the updated ABox A′ is defined as (cf. proposition 2.2):

A′ =
∨
D∈D

∧
ADU ∪ DU ∪ (D \ D¬U). (5.1)

Next consider the following construction of a new ABox B from the input ABox
A, and the update U :

B =
∨
DU⊆U

∧
ADU ∪ U . (5.2)

We can show the following proposition:

Proposition 5.3 (Updated ABox). Let A′ be constructed according to equation
(5.1), and let B be obtained using equation (5.2). Then A′ and B are equivalent.

Updating Boolean ABoxes

Updating an ABox according to Proposition 2.2 or 2.3 results in a Boolean ABox.
In [Liu et al., 2006] this updated ABox is transformed to a non-Boolean ABox using
the @-constructor, before it is updated again. The following observation shows that

105

Chapter 5 DL-based Action Logic Programs

Boolean ABoxes can directly be updated again by updating the individual assertions,
avoiding the transformation.

Observation 5.1 (Distributivity of Update). ABox update distributes over the log-
ical connectives conjunction and disjunction in Boolean ABoxes; i.e.

(A1 �A2) ∗ U ≡ (A1 ∗ U)� (A2 ∗ U),

where � denotes either ∧ or ∨ (negation can be pushed inside the assertions).

By updating a Boolean ABox directly we also obtain a slightly more compact rep-
resentation than the original one — the update U is no longer contained in two
disjuncts:

Observation 5.2 (Updating Boolean ABoxes). For a Boolean ABox A(we assume
negation has been pushed inside the assertions), let the updated ABox A′ be defined
as

A′ = (A~ U) ∧
∧
U .

Here A~ U is defined recursively as

α~ U =
∨
DU⊆U

αDU

(A� B)~ U = (A~ U)� (B ~ U)

where � denotes ∧ or ∨, α is an assertion, and αDU is defined as in Proposition 2.2
(or 2.3) for ALCO+ (or for ALCO@, respectively). Then A ∗ U ≡ A′.

As already stated this construction avoids the duplication of the update itself.
But it also results in a different formula type for the updated, Boolean ABox. Let
us first explain our notion of Boolean ABoxes in CNF and DNF: By replacing every
assertion in a Boolean ABox A with a propositional letter we obtain a propositional
formula FA. Now we say that the ABox A is a Boolean ABox in CNF (resp. DNF)
if FA is in CNF (resp. DNF). Following the above construction the updated ABox
is in CNF, whereas the original construction produces DNF ABoxes. Whereas in
the original construction ABoxes were updated as a whole, the above construction
updates ABoxes assertion-by-assertion.

In order not to clutter up the notation in the following we will use D instead of
DU to denote an arbitrary subset of an update U . We will also call such a subset
D a diagram.

106

5.2 Implementing ALPs atop ABox Update

Determinate Updates

Looking at the construction of updated ABoxes, we see that for an ABox A, and
an update U in the updated ABox we get a disjunct for every subset (diagram) D
of U . This causes a rapid growth of the updated ABox. If, however, D contains a
literal δ such that either δ or its negation is entailed by the ABox A, then some of
the computed updated disjuncts will be inconsistent and can hence be removed:

Observation 5.3 (Determinate Updates). For Boolean ABox A, update U , asser-
tion δ ∈ U , and D a diagram of U we have that

∧
U ∪ AD is unsatisfiable if either

• A � δ and δ ∈ D; or

• A � ¬δ and δ /∈ D.6

Otherwise, if A 2 δ and A 2 ¬δ, for all δ ∈ D, then AD is consistent.

Detecting this type of situation requires up to two reasoning steps for every literal
δ in the update: A |= δ and A |= ¬δ, resulting in a trade-off between time and
space efficiency: Spending more time on reasoning may result in a smaller updated
ABoxes.

Exploiting the Unique Name Assumption

The mandatory unique name assumption (UNA) enforces that no two individual
names may denote the same object. The constructions from Proposition 2.2 and 2.3
do not take the UNA into account, however; in our implementation we construct
simpler updated ABoxes by keeping track of the individuals ~s and ~t that an assertion
γ(~s) refers to when updating it with δ(~t):

Definition 5.5 (Updated Assertion with UNA). We define the ABox AD as AD =
{CD,a(a) | C(a) ∈ A} ∪ {rD,a−b(a, b) | r(a, b) ∈ A}. The interesting part of the
definition of CD,i and rD,i−j is given in figure 5.1 — we omit the straightforward
Boolean constructors. For ALCO@ ABoxes we only use the modified construction of
concept assertions.

Let us illustrate how the modified construction is working by means of a small
example:
Example 5.2 (Exploiting UNA). If we update the ABox A = {A(i)} with D =
{¬A(j)}, we can easily obtain A(i), instead of At{j}(i) using the standard construc-
tion. But next consider the ABox A = {∀r.({j} u A)(i)}, updated by D = {A(k)}.
As part of the standard update construction we obtain ∀r.({j}u(Au¬{k}))(i) which
can be simplified using UNA to ∀r.({j} u A)(i). In our implementation we cannot
detect this latter case, which can only be identified by reasoning.

6The latter of these two observations can already be found in [Liu et al., 2006].

107

Chapter 5 DL-based Action Logic Programs

AD,i = >, if ¬A(i) ∈ D AD,i = ⊥, if A(i) ∈ D
AD,i = A, if {(¬)A(i)} ∩ D = ∅
rD,i−j = >, if ¬r(i, j) ∈ D rD,i−j = ⊥, if r(i, j) ∈ D
rD,i−j = r, if {(¬)r(i, j)} ∩ D = ∅
{i}D,i = > {i}D,j = ⊥
{(i, j)}D,i−j = > {(i, j)}D,k−l = ⊥, if k 6= i or l 6= j
(∃r.C)D,i = ∃r.(CD), if q(i, x) /∈ D (∀r.C)D,i = ∀r.(CD), if q(i, x) /∈ D

for q ∈ sub(r) for q ∈ sub(r)
(∃r.C)D,i = (∃r.C)D, otherwise (∀r.C)D,i = (∀r.C)D, otherwise
(@jC)D,i = @jC

D,j (@iC)D = @iC
D,i

Figure 5.1: Constructing CD,i and rD,i−j for ALCO+ and ALCO@

On the one hand, this UNA-based construction is not costly at all. On the other
hand, it cannot identify all cases where the UNA admits a more concise updated
ABox.

Omitting Subsuming Disjuncts and Entailed Assertions

Intuitively, in a disjunction we can omit the “stronger” of two disjuncts: Let the
disjunction (AD1 ∨ AD2) be part of an updated ABox. If AD1 � AD2 then (AD1 ∨
AD2) ≡ AD2 . Detecting subsuming disjuncts in general requires reasoning. But
by a simple, syntactic check we can detect beforehand some cases where one of the
disjuncts AD1 and AD2 will subsume the other. Then the computation of subsuming
disjuncts can be avoided.

We say that an occurrence of a concept or role name δ in an assertion is positive,
if it is in the scope of an even number of negation signs, and negative otherwise.

Observation 5.4 (Detecting Subsuming Disjuncts). For an ABox A that is to be
updated with update U it holds that:

(1) if the update U is positive wrt. the concept or role name δ then

– if δ occurs only positively in A then AD1 � AD2; and
– if δ occurs only negatively in A then AD2 � AD1,

for all subsets D1,D2 of U such that D1 = D2 \ {δ(~t) | δ(~t) ∈ U}.

(2) if the update U is negative wrt. the concept or role name δ then

– if δ occurs only positively in A then AD2 � AD1; and
– if δ occurs only negatively in A then AD1 � AD2,

again for all subsets D1,D2 of U such that D1 = D2 \ {δ(~t) | δ(~t) ∈ U}.

108

5.2 Implementing ALPs atop ABox Update

This means that in case (1) we retain only those diagrams that do not contain
any of the δ(~t) assertions, whereas in case (2) we retain only those diagrams that
contain all the δ(~t) assertions.

Conversely, we can also avoid updating entailed assertions:

Observation 5.5 (Omitting Entailed Assertions). Let A be an ABox and U an
update. If U |= α or A\{α} |= α for some assertion α ∈ A, then A∗U ≡ (A\{α})∗U .

Removing all entailed assertions might be too expensive in practice; one might
try doing this periodically.

Independent Assertions

Next we address the question under which conditions an assertion in an ABox is not
affected by an update. We say that assertion α in an ABox A is independent from
update U = {δ} iff A ∗ U ≡ α ∧ (B ∗ U) where B = A \ {α}. The more independent
assertions we can identify, the more compact our ABox representation becomes.

Detecting this in all cases requires reasoning steps and thus is costly. It is easy,
though, to syntactically detect some of the independent assertions:

Observation 5.6 (Independent Assertion). The assertion α(~t2) is independent from
the update U for an ABox A in negation normal form if for all concept and role
names δ such that (¬)δ(~t1) ∈ U

• if δ /∈ sub(α), or

• if A � ~t1 6= ~t2, δ occurs in α only outside the scope of a quantifier, and for all
subconcepts @iC of α the assertion C(i) is independent from U .

Assertion Representation

For various reasons it is useful to define a normal form for assertions: In our im-
plementation we move negation, disjunction, and quantifiers as far inward into the
assertions as possible. We also do some lexicographic ordering, and split conjunc-
tions outside of the scope of quantifiers. This results in a non-canonical normal
form, that is both cheap to compute, and where many equivalent assertions are rep-
resented syntactically identical. Similar techniques are standard in DL reasoning;
for us this will prove particularly useful in the section 5.2.4 on DPLL(T) below,
where we assign propositional variables to assertions.

Our normal form ensures that ABoxes are always in negation normal form (NNF);
in our implementation we also use a variant of the update construction that from
ABoxes in NNF directly produces updated ABoxes in NNF.

109

Chapter 5 DL-based Action Logic Programs

5.2.3 Evaluation of ABox Update Implementation

In this section we provide some empirical results wrt. the efficacy of the various
optimization techniques introduced above.

For the evaluation we use our own implementation of logical ABox update in
ECLiPSe-Prolog [ECLiPSe Implementors Group, 2009], and an implementation of
projective ABox updates (cf. section 2.4.2) by Hongkai Liu in Java.7 The testing
was done in joint work with Hongkai Liu, who kindly also provided the testing data.
Testing was done using a set of 2000 random ALC ABoxes containing between two
and twenty-three assertions, and a set of 2000 random, unconditional updates con-
taining between one and eleven effects. The methodology underlying the generation
of the random input is described in [Liu, 2009].

To begin with, figure 5.2 (courtesy of Hongkai Liu) shows the sizes of updates
based on projective updates (plotted as ×) and a naive implementation of logical
updates in ALCO@ (plotted as +), where by a naive implementation of logical
updates we refer to an implementation that is directly based on the construction of
logical updates as recapitulated in section 2.4.2 — with no optimizations whatsoever.
The horizontal axis shows the size of the input ABox, and the vertical axis shows
the logarithmized size of the output ABox (ln(n)). Figure 5.2 seems to confirm
the theoretical expectation that projective updates (being polynomial in the input)
behave much better than logical updates, which are exponential in all of the input.

Let us next discuss the efficacy of the various optimization techniques for logical
updates introduced above.

We start with an observation on updating ABoxes to either CNF or DNF. The
other optimizations notwithstanding, updating to CNF due to the duplication of
identical assertions results in updated ABoxes that are significantly bigger than
those obtained by updating to DNF. As expected in the experiments the CNF rep-
resentation proved far superior.

For all the other optimization techniques the bottom-line is that the syntactic
variants outperform their counterparts involving reasoning. For example, in the 2000
random input ABoxes, together with the 2000 random updates we could not find a
single assertion that was independent from the update by resorting to reasoning for
which we could not detect this syntactically. The costs for the syntactic fragments of
the optimization techniques proved to be negligible, and on the random input data all
of the optimization resulted in smaller updated ABoxes. Hence, our implementation
syntactically does the following:

• Transform ABoxes into a certain normal form;

• Exploit the unique name assumption;
7For clarity, in this section we refer to ABox update as logical update to distinguish it from

projective update.

110

5.2 Implementing ALPs atop ABox Update

Size of Updated ABoxes

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

+ : Logical updates in ALCO@

× : Projective updates

The numbers in vertical axes are logarithmized (ln(n)).

Figure 5.2: Comparing the size of projective and logical updates

• Update directly to negation normal form;

• Detect subsuming disjuncts; and

• Identify assertions that are independent from the update.

Regarding optimizations that require reasoning we could make the following ob-
servations:

• The costs for detecting and removing entailed assertions were prohibitively
high. We have not looked into heuristics for identifying suitable candidate
assertions, though.

• With regard to the identification of determinate updates we could make an
interesting observation: On the set of the 2000 random input data the syntactic
technique for identifying subsuming disjuncts was able to detect virtually all
determinate updates.8

8This means that there is no assertion α in the testing data such that a concept or role name
occurs both negatively and positively in α.

111

Chapter 5 DL-based Action Logic Programs

Summing up, neither of the two optimization ideas based on reasoning proved
worth the cost.

With this we come to the comparison of our optimized implementation of logi-
cal updates to the implementation of projective updates on the same 2000 testing
data. In figure 5.3 (also courtesy of Hongkai Liu) we can see that the optimized
implementation works well on the random testing data. The left graph shows the
size of the updated ABoxes for all 2000 testing data, while the graph on the right
shows the respective sizes of those updated ABoxes that are of size up to 400 000.
The sizes of projective updates are plotted as ×, whereas • and + denote the sizes
of logical updates in ALCO+ and ALCO@, respectively. Here, the horizontal axis
shows the size of the input ABox, and the vertical axis shows the logarithmized size
of the output ABox in the left graph, and the logarithmized run-time in milliseconds
in the right graph — both times (ln(n)). We do not show the computation time for
updated ABoxes in ALCO+ (•) in the right graph — it is almost identical to that
of projective updates (×).

Size of Updated ABoxes Time for Updating

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500
 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500

+ : Logical updates in ALCO@

× : Projective updates

• : Logical updates in ALCO+

The numbers in vertical axes are logarithmized (ln(n)).

Figure 5.3: The size of projective and optimized logical updates

We can make the following observations: In general, the logical updates inALCO+

are the smallest. Next the logical updates in ALCO@ frequently behave better than
the projective updates — however, there is a number of cases where their theoretical
inferiority shows up. Overall, the behavior of projective updates is more predictable

112

5.2 Implementing ALPs atop ABox Update

than that of logical updates in ALCO@. For the latter, all observed “bad” cases
occurred if the update contained assertions that concerned subconcepts and -roles
that occurred at a quantifier depth greater than one in the input ABox — i.e. the
update concerned unnamed individuals.

The following numbers also highlight the differences between the competing rep-
resentations: The random input data consume about 17 MB of disk space. The
updated ABoxes consume about 20 MB in ALCO+, about 1.1 GB in ALCO@, and
about 1.5 GB as projective updates. To be fair, in ALCO@ not even all updated
ABoxes could be computed — there are about sixty ABoxes that are not included in
the 1.1 GB but in the 1.5 GB of the projective updates. However, the most striking
fact is the superiority of ALCO+.

This somewhat surprising superiority of the exponential logical updates inALCO+

over the polynomial projective updates can at least in part be attributed to the fact
that none of the optimization techniques introduced above can directly be applied
to projective updates. Developing powerful optimization techniques for projective
updates is thus an interesting topic for future work.

Let us also briefly comment on the issue of iterated updates: The results in figures
5.2 and 5.3 are for non-iterative updates. As discussed in [Liu, 2009] projective
updates do not handle iterated updates well in practice. One way around this is
to merge iterated updates into a single one [Liu, 2009], e.g., to merge the updates
U1 = {A(a)} and U2 = {¬A(a)} into U = {¬A(a)}. While for projective updates this
technique is vital, for ALCO+ it is not yet clear whether it is cheaper to repeatedly
enforce the same effect or to accept a small increase in redundancy of the updated
ABox.

Summing up, as of now logical updates in ALCO+ appear to be the best repre-
sentation formalism for ABox update.

5.2.4 Reasoning with Updated ABoxes

In this section we discuss the different reasoning methods that we have used for
reasoning with updated ABoxes. Basically, we distinguish two reasoning types:

• If the respective HOLDS-atom from the ALP is ground it is sufficient if the
reasoner decides ABox (un-)satisfiability.

• If the HOLDS-query is non-ground, i.e. contains variables, the reasoner has to
support query answering.

Theoretically, the latter reasoning task can be reduced to the former, by itera-
tively trying instantiations of the query with all the individual names of the domain.
Note that this theoretical possibility of answering queries by checking ground query

113

Chapter 5 DL-based Action Logic Programs

entailment extends to disjunctive substitutions; we simply generate candidate dis-
junctions. Here the practical infeasibility of the approach is especially apparent. In
practice dedicated support for query answering thus is an important distinguishing
feature of the different reasoning methods.

Another distinguishing feature of the reasoning methods is the logic supported,
i.e., whether the reasoner supports ALCO@ or ALCO+. Incidentally, the fact that
updated ALCO ABoxes are in either ALCO@ or ALCO+ is one of the key chal-
lenges of reasoning with updated ABoxes: State-of-the-art DL reasoners like Pellet,
FaCT++, and Racer, support neither logic. The other key challenge is that these
reasoners also do not support Boolean ABox reasoning. In the following we will
present five different approaches for reasoning with updated ABoxes that in princi-
ple can cope with these challenges:

• one which is based on propositional satisfiability testing modulo theories —
the DPLL(T) approach;

• one which uses a consistency preserving reduction from a Boolean ABox to a
non-Boolean ABox;

• one which uses Spartacus, a tableau prover for hybrid logic;

• one which uses Otter, a first-order theorem prover; and

• one which uses MetTeL, a tableau reasoner that supports Boolean ABoxes.

The first three of these approaches work for ALCO@, while the latter two work
for ALCO+. Only the reduction approach and Otter provide dedicated support for
query answering. It is worth pointing out that we cannot expect to get an imple-
mentation of CLP(DDL) for conditional planning unless we use a theorem prover:
The notion of a disjunctive substitution (or a disjunctive answer to a query) is not
supported by all other reasoners.

For the first two approaches we have to deal with the @ constructor. Using the
equivalence-preserving, exponential transformation from [Liu et al., 2006] for com-
piling the @ constructor away we can obtain an equivalent Boolean ABox. However,
if we instead simulate the @-operator by a universal role [Bong, 2007] we obtain a
linear consistency-preserving transformation — we adopt this approach.

In our implementations we use Pellet as a DL reasoner because it supports nomi-
nals, query answering and pinpointing [Sirin et al., 2007].

DPLL(T)

The work on the DPLL(T) approach was conducted by Hongkai Liu. Here we only
give a brief outline of the approach, the details can be found in [Liu, 2009].

114

5.2 Implementing ALPs atop ABox Update

Most of the contemporary state-of-the-art SAT-solvers [Een and Sörensson, 2003,
de Moura and Bjørner, 2008] implement variants of the well-known Davis-Putnam-
Logemann-Loveland (DPLL) procedure for deciding the satisfiability of clauses in
propositional logic [Davis and Putnam, 1960, Davis et al., 1962]. The DPLL(T) ap-
proach combines a DPLL procedure with a theory solver that can handle conjunc-
tions of literals in the theory to solve the satisfiability problem modulo theories
(SMT) [Nieuwenhuis et al., 2007]. In DPLL(T) a DPLL procedure works on the
propositional formula obtained by replacing the theory atoms with propositional
letters. Whenever the DPLL procedure extends the current partial interpretation
by a new element the theory solver is invoked to check consistency of the conjunction
of the theory atoms corresponding to the partial, propositional interpretation. If the
theory solver reports an inconsistency, the DPLL procedure will back-jump and thus
the search space is pruned. The consistency problem of Boolean ABoxes becomes
an instance of SMT if we take ABox assertions as theory atoms and a DL reasoner
as theory solver.

In DLs the inference problem of explaining which (combinations of) assertions in
an ABox cause the ABox to be inconsistent is known as pinpointing [Schlobach, 2003,
Baader and Peñaloza, 2008]. In the DPLL(T) approach these explanations can then
be used to build back-jump clauses [Nieuwenhuis et al., 2007].

Hongkai Liu implemented the DPLL(T) approach with the strategy of MiniSat
[Een and Sörensson, 2003], using Pellet as theory solver because of its support for
pinpointing. This implementation is henceforth called Pellet-DPLL. This approach
works for ALCO@ and its extensions, but lacks dedicated support for query answer-
ing.

Pellet Reduction

We can linearly compile Boolean ALCO@ ABoxes to classical ALCO@ ABoxes
[Liu et al., 2006]. Then, simulating the @-operator by a universal role, we can di-
rectly use a standard DL reasoner; this approach is henceforth called Pellet-UR.
This approach works for ALCO@ and its extensions, and directly supports query
answering.9

Automated Theorem Proving: Otter

As we have seen in figure 5.3 the DL ALCO+ admits small updated ABoxes. How-
ever, its role operators are not supported by current mature DL reasoners. By
translating ALCO+ to first order logic [Borgida, 1996] we can use theorem provers
that naturally can cope with Boolean role constructors (and also Boolean ABoxes).

9The idea for this approach originates from Carsten Lutz.

115

Chapter 5 DL-based Action Logic Programs

We chose to use Otter [McCune, 2003] because it supports query answering via
answer literals [Green, 1969]. After a few experiments we chose to configure Otter to
use hyper-resolution combined with Knuth-Bendix-rewriting, plus the set-of-support
strategy.

MetTeL

MetTeL is a tableau based reasoner that supports a variety of logics; among them is
the DL ALBO [Schmidt and Tishkovsky, 2007] that features Boolean role operators.
While ALBO does not directly support the nominal role of ALCO+, the nominal
role can still be expressed in ALBO. In particular we have used the following
encoding of the nominal role: We introduce a reserved role name u and for every
pair of individual names (a, b) a fresh role name rab — rab denotes the nominal role
{(a, b)}. We then include the following axiom in our domain description:

∀u t ¬u.[(∀rab.{b}) u (∀¬rab.¬{b}) u (∀rab−.{a}) u (¬rab−.¬{a})].10

Intuitively, this axioms says that for all y reachable via the universal role ut¬u the
following holds: If y is connected via rab to another individual then that individual is
{b}, and if there is no connection via rab to some other individual then this individual
is ¬{b}. The second half of the axiom is analogous. Accordingly rab(c, d) iff {a}(c)
and {b}(d). There is another similar encoding of the nominal role in MetTeL using
ALBO’s domain and range restrictions for roles. A strong-point of MetTeL is that
it directly supports Boolean ABox reasoning. However, it has no built-in support
for query answering.

Spartacus

In his thesis Hongkai Liu has also evaluated the performance of the reasoner Spar-
tacus [Götzmann, 2009], a dedicated reasoner for hybrid logic. ALCO@ can be
regarded as a notational variant of hybrid logic [Liu, 2009], and hence Spartacus is
also applicable to reasoning with updated ABoxes. Moreover, Spartacus directly sup-
ports Boolean ABoxes. However, Spartacus, only decides satisfiability of (Boolean)
ABoxes: It lacks dedicated support for query answering.

5.2.5 Evaluation of Reasoning with Updated ABoxes

In this section we evaluate how well the various proposed reasoning methods worked.
In particular, we address the following questions:

• Which reasoning method performs best if the underlying logic is ALCO@ (or,
respectively, ALCO+)?

10MetTeL accepts this expression as an axiom.

116

5.2 Implementing ALPs atop ABox Update

• And how do ALCO@ and ALCO+ compare with regard to reasoning?

• How do the logical updates we implemented compare to the theoretically
tractable projective updates?

• How does the ABox update approach compare to a regression-based DL action
formalism wrt. reasoning?

• How does reasoning with ABox updates compare to the propositional approach
of ALPprolog?

• Finally, how important is dedicated support for query answering?

Testing Scenarios

We have evaluated the performance of the above methods for reasoning in two dif-
ferent settings: We have used more randomly generated testing data, and we have
investigated a simple DL version of the Wumpus world (cf. section 4.7.2). The
testing results were obtained in joint work with Hongkai Liu.

The random testing data were created by combining the 2000 random input
ABoxes and updates with 20000 randomly generated ALCO ABoxes serving as
queries.11 The random queries have again kindly been provided by Hongkai Liu;
information on the parameters used to generate the testing data can be found in his
thesis [Liu, 2009].

We have used the random testing data in two different scenarios:

• In one testing scenario we applied only a single update to an input ABox, and
then performed a reasoning step.

• For the second, more realistic scenario, we assume an agent is endowed with an
initial world model. It then performs some reasoning steps, next it performs
an action, updates its world model, again performs some reasoning steps, and
so on.

In the second testing scenario we have extended the Wumpus world to a DL
problem by adding the (redundant) assertion ∃at.>(wumpus).

Reasoning in ALCO@ and ALCO+

We start by comparing reasoning with updated ALCO@ ABoxes to reasoning with
updated ALCO+ ABoxes. We used both the random testing data, and the Wumpus
world to evaluate ABox consistency checking, and query answering.
11Without a query we can never detect inconsistency, because updated ABoxes always are consis-

tent.

117

Chapter 5 DL-based Action Logic Programs

Reasoning in ALCO@ For reasoning with updated ALCO@ ABoxes we could make
the following observations: For consistency checking of ABoxes in CNF, Spartacus,
Pellet-DPLL, and Pellet-UR exhibited a comparable behavior. For query answering
the clear winner is Pellet-UR.

Spartacus performed best by a small margin for ABox consistency checking.
Pellet-DPLL generally did better than Pellet-UR for detecting an actual inconsis-
tency, while it performed worse than Pellet-UR if the ABox was consistent with the
negated query: The overhead introduced by doing DPLL on top of DL reasoning
really pays in the case of an inconsistent ABox. Here, the inevitable clashes result in
back-jump clauses that help to prune the search space. For a consistent ABox, in the
extreme case the DL tableau reasoner might be able to construct a model without
encountering any clashes. In this case the redundancy of the additional construction
of a propositional model via DPLL is especially apparent. Hence it may be a fruitful
approach to build a hybrid reasoner that interleaves these two approaches.

If query answering is among the reasoning tasks, then Pellet-UR is to be preferred
over both Pellet-DPLL and Spartacus because of Pellet’s direct support for this
inference.

For ABox consistency checking the biggest problems occurred if the update was
relevant to unnamed individuals in the original ABox, because in the case of ALCO@

this leads to a dramatic increase in ABox size (cf. the discussion in section 5.2.3)
above.

The performance of the DPLL(T) approach depends on the performance of the
SAT solver and the pinpointing service. Thus Pellet-DPLL could benefit from a
more efficient implementation of these tasks.

However, realistic application scenarios involve query answering, and this is a task
at which only Pellet-UR excels. For Pellet-DPLL and Spartacus to be applicable
it would be vital to first develop heuristics for finding suitable individual names as
well as other optimizations for query answering.

Reasoning in ALCO+ For reasoning in ALCO+ we have tried a resolution based
theorem prover (Otter) and a tableau prover (MetTeL).

Using Otter as a theorem prover might be considered somewhat unfair to the the-
orem proving approach, since it is no longer actively maintained and optimized. We
chose to use Otter because it supports query answering, which is not supported by
most current provers [Waldinger, 2007], but vital in some domains. At the time of
writing, efforts were under way to reestablish query answering as a theorem proving
task (cf. www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html).
There is likewise work going on to make theorem provers more effective on large,
but simple axiom sets. Thus it may be possible to resort to state-of-the art theorem
provers for reasoning in ALCO+ in the near future.

118

www.cs.miami.edu/~tptp/TPTP/Proposals/AnswerExtraction.html

5.2 Implementing ALPs atop ABox Update

In general, the behavior of Otter was not predictable, i.e. the reasoning times
varied greatly. The bottleneck appeared to be the conversion from ABoxes in CNF
to full first order CNF. State-of-the-art resolution provers use different transforma-
tion algorithms [Nonnengart and Weidenbach, 2001] that result in more manageable
clause sets.

The performance of MetTeL was more predictable than that of Otter, although in
some cases it seems to depend on a random seed used to ensure fair tableau deriva-
tions. Moreover, and contrary to Otter, MetTeL is a decision procedure for ALCO+.
Although, ALCO+ can in principle also be decided by resolution, in practice resolu-
tion theorem provers often discard clauses they no longer deem necessary, and this
behavior may cause them to be incomplete.

For MetTeL the biggest problems appeared to be that it is not optimized for
ABox reasoning at all, and that it does not use back-jumping to prune the search
space. The usage of back-jumping is generally considered a key component in the
implementation of an efficient DL reasoner [Baader et al., 2003]. The encoding of
the nominal role via a universal role introduces a lot of avoidable non-determinism
in the derivations, too.

Comparing ALCO@ and ALCO+ The most important result wrt. reasoning with
ABoxes updated to ALCO+ instead of reasoning with their counterparts updated to
ALCO@ is that it is not competitive. Pellet-UR on top of ALCO@ proved to perform
better in almost all of the conducted tests. This may be somewhat surprising, given
that ALCO+ has proven to be a far superior representation language for updated
ABoxes (cf. section 5.2.3 above).

Of course theoretically reasoning in ALCO+ is NExpTime-complete compared
to the PSpace completeness of ALCO@. This jump in complexity is due to the
fact that in ALCO+ we can use complicated role constructions inside quantifier
restrictions. Starting from the same original ALCO ABox and then updating it
to either a Boolean ABox in ALCO+ or ALCO@, however, at least intuitively the
structure of the ALCO+ ABox is far simpler. However, our experiments clearly
showed that ALCO@ together with Pellet-UR is superior to ALCO+ with either
Otter or MetTeL.

At this point we would like to conjecture that it should be possible to build a
tableau prover similar to MetTeL that

• fully supports Boolean ABox reasoning;

• exploits back-jumping;

• supports query answering;

119

Chapter 5 DL-based Action Logic Programs

• has dedicated support for the nominal role;12 and

• is competitive with state-of-the-art DL reasoners.

This may finally allow us to exploit the fact that ALCO+ admits smaller updated
ABoxes than ALCO@. Moreover, we believe that this combination of a hypothetical
reasoner with ALCO+ as underlying DL should allow to fully exploit the potential
of ABox update.

We conjecture that a tableau based reasoner is more likely to result in good per-
formance than a resolution based theorem prover for the following reasons: Theorem
provers are — as the name suggests — typically designed to prove theorems. Hence
their performance often is poor if the clause set is satisfiable. Moreover, they are typ-
ically designed to find proofs from a small number of intricate axioms. We expect
that in application scenarios support for a big number of fairly simple assertions
is more important: Recall that ABox update works best if the update does not
concern unnamed, i.e. quantified individuals. Some discussion of the issue tableau
based versus resolution based reasoning in Description Logics can be found in, e.g.,
[Tsarkov and Horrocks, 2003] and [Horrocks and Voronkov, 2006] — although this
discussion is chiefly concerned with TBox reasoning some of the raised issues apply
to ABox reasoning, too.

A strength of the theorem prover approach is that it naturally supports the notion
of a disjunctive answer substitution via answer literals — for tableau based reasoners
this reasoning task to the best of our knowledge has not been studied yet. Of course,
a resolution prover tailored for DL and in particular also ABox reasoning may be
a viable alternative. There is, e.g., some recent work on deciding the DL SHOIQ
via resolution, where the authors emphasize that they aim also at efficient ABox
reasoning with a future version of the reasoner KAON2 [Kazakov and Motik, 2008].

Let us contemplate this issue from one more angle: Recently, it has been argued by
Raphael Volz in his dissertation [Volz, 2007] that neither tableau calculi nor classical
theorem proving techniques can match the needs of efficient DL ABox reasoning.
Instead he proposed to use techniques from deductive database technology for this
task. The resulting system is reasonably efficient, albeit incomplete. Statistically it
appears to have a high recall. If we were to try this approach the major obstacle is
that the proposed techniques cannot cope with nominals yet — and for constructing
updated ABoxes these are indispensible.

Logical and Projective Updates versus Regression in DLs

In the previous section we have seen that for logical updates the combination of
ALCO@ as representation language and Pellet-UR as reasoner worked best. In this
12Extending the tableau for ALBO [Schmidt and Tishkovsky, 2007] to support the nominal rule

poses no major difficulties.

120

5.2 Implementing ALPs atop ABox Update

section we compare logical updates, projective updates and a form of DL based re-
gression. The reasoning task we studied is inspired by the following realistic scenario:
An agent that is endowed with an initial world model will most likely interleave rea-
soning steps with the execution of actions that affect the world model.

We have used the same testing data, and this testing, too, has been done in joint
work with Hongkai Liu. The task we used for testing consisted of alternatingly first
posing one query, and then applying an update, starting from a random initial ABox.

Table 5.1 shows run-time results for selected ABoxes: We picked two small,
middle-sized, and big input ABoxes each, where for one of these the final output
ABox was relatively small, and for the other relatively big (ABoxes 37, 406, 713,
1124, 1331, 1712).13 The numbers indicate how many update-and-reason steps could
be completed in a thirty minute time-frame. If all 2000 steps have been completed
the approximate run-time is shown in minutes in parentheses.

Hongkai Liu has also implemented the DL based action formalism presented in
[Baader et al., 2005]. It has been shown in [Milicic, 2008] that this action formal-
ism can be seen as a variant of regression-based reasoning in the Situation Calculus
[Reiter, 2001a]. We have used this implementation to compare regression to progres-
sion (i.e. ABox update) in DL based action formalisms. In table 5.1 the regression
implementation is shown under the name “Projection”.

ABox Pellet-UR Projective Update Projection
37 2000 (8.8 min) 2000 (5.1 min) 2000 (12.2 min)
406 2000 (9.7 min) 2000 (5.4 min) 2000 (14.1 min)
713 168 80 2000 (13.9 min)
1124 78 6 2000 (15.1 min)
1331 39 11 238
1712 19 1 181

Table 5.1: Reasoning with sequences of updates.

From this table we can see that logical updates resulted in better performance
than projective updates, especially if the problems got harder. However, we can also
see that the same holds of the regression implementation which performed best on
the hardest problems. For these hardest problems, the logical updates were more
likely to “blow up” at some point — by this we mean an update that results in a
dramatic increase in ABox size. However, also the regression approach suffers from
occasionally dramatic increases in knowledge base size. Even though projective
updates are the only approach not affected by similar “explosions” they exhibited
even worse performance than logical updates.

13Sizes refer to optimized logical update.

121

Chapter 5 DL-based Action Logic Programs

Comparing ABox Update to Propositional Reasoning

In this section we have a look at the price we have to pay for the expressivity of DL
ABoxes, as compared to propositional state representation. To do this we extend
the simple propositional model of the Wumpus world presented in section 4.7.2 to
a DL problem by adding the (redundant) assertion ∃at.>(wumpus). The model
only had to be slightly adapted, because in DLs we do not have nested terms at our
disposal: We write, e.g., cell11 instead of cell(1,1). Some results for this scenario
are shown in table 5.2, where PL1 denotes the propositional model introduced in
section 4.7.2, and DL1 is the respective DL extension. Unsupported expressivity is
denoted by by n/a in table 5.2.

Model ALPprolog Pellet-UR
4x4 PL1 0.01 s 21.4 s (-4.6 s)
8x8 PL1 0.2 s 1024.3 s (-525.5 s)
4x4 DL1 n/a 19.9 s (-4.7 s)
8x8 DL1 n/a 984.6 s (-522.3 s)

Table 5.2: Run-times for the DL Wumpus World.

The first thing we note is that for Pellet the presence of a single quantifying
assertion is insignificant — in fact, if any effect can be noticed at all it is a positive
one. Next we have to note that there is a huge gap wrt. performance between the
propositional and the DL reasoner.

This may be attributed to several factors: First of all, the library we use for
interfacing Prolog to Pellet is inefficiently implemented — in parentheses we show
the time the program spends on the task of Pellet input generation. But even if
we disregard the respective overhead the difference in runtime is huge. On the
one hand, ALPprolog and Pellet use a different path through the Wumpus world,
because of the different order in which substitutions are generated. However, the
Wumpus worlds are generated in such a way that an almost complete exploration of
the world is performed in both cases. Moreover, our implementation of ABox update
ensures that the DL model also maintains the current state as a conjunction of prime
implicates, and hence reasoning should not be considerably harder for Pellet than
for ALPprolog. Overall we conclude that wrt. reasoning with updated ABoxes there
still seems to be plenty of room for improvement.

The Role of Query Answering

We have used the DL version of the Wumpus world and the random testing data to
evaluate the importance of dedicated support for query answering. Our experiments

122

5.3 Perspectives

confirmed that it is vital: The more individual names occur in the application domain
the more the advantages become apparent. The random testing data featured twenty
named individuals, whereas in the Wumpus world there were up to seventy of them.
Accordingly, in some of the experiments Otter performed better than Pellet-DPLL,
Spartacus, and MetTeL because of its support for query answering via answer literals.

5.3 Perspectives for ALPs Based on Description Logics

In this section we try to assess the perspectives for an implementation of the ALP
framework atop of DL based action domains. As we have seen above the experimen-
tal results for logical ABox update are mixed, in a rather unfortunate sense:

• If we base ABox update on the DL ALCO+ we can obtain small updated
ABoxes at a low cost. But we could not find a reasoner that works well for
ALCO+.

• State-of-the-art DL reasoners worked fairly well on ABoxes that have been
updated to ALCO@, however. But we have seen that ALCO@ is a poor choice
for representing updated ABoxes.

We have seen that the theoretically tractable projective updates in practice per-
formed worse than the logical updates. They are based on a less straightforward
encoding of the occuring changes, and hence it proved hard to find optimization
techniques similar to those applicable in the case of logical updates [Liu, 2009].

We have also seen that a regression based implementation performed slightly bet-
ter than the progression based formalism of ABox update. This contradicts our
assumption that progression tends to gain over regression the longer the action se-
quences considered become.

We have also seen that there is a huge gap in performance between DL reasoning
and propositional reasoning on essentially the same modelings of the Wumpus world.

We take all this to show that the implementation of ABox update and reasoning
with updated ABoxes does not yet live up to its potential. As discussed above we
conjecture that the key ingredient required for obtaining a decent implementation of
ALPs atop of Description Logics is a (tableau based) reasoner that is optimized for
query answering and reasoning with Boolean ABoxes inALCO+ (and its extensions).

123

6 Relation to Existing Work

In this chapter we explore the relationship between our ALP framework and the
manifold existing work on specifying strategies for agents in dynamic domains. In
view of both the generality of our framework and the huge body of existing work
this is a daunting task. Our own work focuses on the specification of strategic be-
havior in dynamic domains using classical logic — as motivated in the introduction.
We simplify our task by exploring only the relation between our framework and
approaches that are likewise based on classical logic. In particular we will discuss
how action logic programs relate to the following languages:

• Golog, the imperative, Situation Calculus-based agent control language;

• Flux, the logic programming dialect based on the Fluent Calculus; and

Thus we completely ignore, e.g., the work on agent strategies using

• non-monotonic logic and in particular answer set programming (see, e.g.,
[Gelfond and Lifschitz, 1992, Baral, 2003] for an introduction); and

• so-called belief-desire-intention architectures for agent programming that are
not based on formal logic (see, e.g., [Bordini et al., 2007, Mascardi et al., 2005,
Spark Implementors Group, 2009]).

But we do discuss the relation of ALPs to dedicated planners, systems that can
be used to solve planning problems in a domain-independent fashion. Likewise we
discuss recent theoretical results concerning reasoning about action domains. These
theoretical insights pave the way for future implementations of action reasoners that
can then be plugged into the ALP framework.

6.1 Golog

Arguably, Golog [Levesque et al., 1997, Reiter, 2001a] is the first action program-
ming language that has been built on top of action theories. It is a very expressive
language which is based on Algol-inspired programming constructs for defining agent
strategies. In the basic version it features the following constructs: Test actions (test-
ing whether some property holds), primitive actions, sequential execution of actions,
non-deterministic choice of arguments and actions, non-deterministic iteration, and

124

6.1 Golog

procedures defined in terms of the aforementioned constructs — conditionals as well
as while-loops can be defined as syntactic sugar. There are also more advanced
versions of Golog that feature concurrent execution of actions, interrupts, and pri-
orities.

Golog programs are usually built atop Situation Calculus action domains — al-
though it is straightforward to use other action formalisms, as long as they are based
on the time structure of situations, and the Poss atom. The original logical seman-
tics for Golog programs has been given in the Situation Calculus [Reiter, 2001a]. It
is based on the idea of macro-expanding programs to formulas of the Situation Cal-
culus. In order to express reachability of situations, for non-deterministic iteration
and procedures second order axioms are used, and hence this logical semantics of
basic Golog is already quite intricate.

In this section we discuss the similarities and differences between Golog and ALPs.
In particular, we discuss the following:

• What are the differences and commonalities between ALPs and basic Golog?

• Can basic Golog programs be expressed as ALPs?

• Can advanced Golog features be accommodated in the ALP framework?

With regard to practical implementations we will also include a short discussion
of the basic Golog interpreter.

6.1.1 The Relation between ALPs and Basic Golog

A first difference between ALPs and basic Golog concerns the “feel” of the language:
The former are inspired by declarative logic programming in the style of pure Prolog;
the latter language is inspired by imperative programming constructs familiar from
Algol.

However, basic Golog and ALPs are quite similar in that both are macro-expanded
to sets of classical logical formulas that in turn provide their semantics. In the case
of basic Golog the macro-expansion yields a set of first and second order Situation
Calculus sentences, which can then be combined with any basic action theory in the
same language. For ALPs we obtain a set of first order Horn clauses, which contain
atoms from the underlying action theory, but also refer to an additional program
signature.

Second Order or First Order Semantics? The major difference between the logical
semantics of basic Golog and ALPs is that the former is second order, whereas the
latter is first order. Capturing precisely what this difference really amounts to is not
easy. But let us point out the following: In [Levesque et al., 1997] the authors give

125

Chapter 6 Relation to Existing Work

a Golog interpreter as a Prolog program, i.e., a set of first order Horn clauses. Then
they write:

“Given the simplicity of the characterization of the do predicate (in first order
Horn-clauses), and the complexity of the formula that results from Do (in second
order logic), a reasonable question to ask is why we even bother with the latter.
The answer is that the definition of do is too weak: it is sufficient for finding a
terminating situation (when it exists) given an initial one, but it cannot be used to
show non-termination. Consider the program δ = [a∗; (x 6= x)]. For this program,
we have that ¬Do(δ, s, s′) is entailed for any s and s′; the do predicate, however,
would simply run forever.”

Here, the construct a∗ denotes non-deterministic iteration (zero or more times) of
an action. Analogously, we can write the following ALP:

p.
p :- do(a), p.

Evaluating the query ?- p, ?(X \= X) is then analogous to evaluating the Golog
program δ.

Certainly the authors did not mean to say that the corresponding set of first
order clauses is satisfiable. But they are correct to point out that in the SLD-proof
calculus (underlying Prolog and ALPs) we obtain an infinite derivation. But this
seems to be a failure of the proof calculus rather, than a failure of the first order
logical semantics, and hence the question about the necessity of the second order
semantics remains unresolved.

On a sidenote, this discussion raises the question why we base ALPs on such
a simplistic proof calculus. After all, a more clever proof calculus should be able
to detect immediately that the above query will not succeed. This point may be
rebutted by paraphrasing [O’Keefe, 1990] where it has been argued that Prolog is
an efficient programming language because it is not a clever theorem prover. This
amount to saying that, because it is easy to understand what Prolog (or ALPs) will
do, the programmer should be able to recognize that the above program plus query
does not make sense.

But let us get back to the discussion of the relation between the first order se-
mantics of ALPs and the second order semantics of Golog: The Golog interpreter
from [Levesque et al., 1997] is first order (like ALPs), while the Golog semantics is
second order. But already the authors of [Levesque et al., 1997] themselves point
out that it is a non-trivial task to state in which sense precisely the Golog interpreter
is correct. To the best of our knowledge this relation has never been made formally
precise. Likewise we were unable to derive a formal result relating the semantics of
ALPs and Golog.

126

6.1 Golog

Inferring Plans Let us next turn to one of the commonalities of basic Golog and
ALPs: Both basic Golog programs and ALPs are macro-expanded to sets of logi-
cal formulas, and hence programs are not objects (terms) of the underlying action
theory. Because of this it is not possible to quantify over programs, forestalling the
program synthesis approach of Manna and Waldinger [Manna and Waldinger, 1987]
— this observation is from [Levesque et al., 1997]. However, both Golog and ALPs
can be used for planning, and the plans inferred can be regarded as simple programs.

Here, the major practical difference between ALPs and basic Golog is that the
former allow to infer conditional plans by appealing to the concept of a disjunctive
substitution. In the planning version of Golog [Reiter, 2001a], however, the plans
considered are linear. In order to fully exploit the fact that in Situation Calculus
action domains a goal holds at some situation if and only if there is a conditional
plan achieving the goal [Savelli, 2006], basic Golog at least needs to be modified
— perhaps by admitting disjunctive substitutions in the non-deterministic choice
operators.

Independence from Particular Action Calculi Another ostensible difference be-
tween basic Golog and ALPs is that for the former up to now only semantics in
situation-based action calculi exist, while the latter also admit action domains that
are based on other time structures. It is hence worth pointing out that Golog can
easily be made independent from the Situation Calculus by defining it on top of the
UAC, just like the ALPs.

Separation between Strategy and Dynamic Domain Basic Golog and ALPs also
differ on the issue of the separation between action domain and agent strategy.
Assume we want to define a numeric measure on some fluents that currently hold
to guide our strategy — say we want to count, e.g., the number of pawns we still
have in the game. In basic Golog this cannot be defined, so the defining formulas
have to be already present in the action domain. In ALPs the respective clauses can
naturally be formulated as part of the strategy.

6.1.2 Expressing Golog Programs as ALPs

We next show that ALPs provide counterparts for all of the basic Golog constructs,
while at the same time they retain a straightforward declarative semantics. The
only price we pay is that sometimes we have to introduce auxiliary atoms.

Translating Basic Golog Constructs For all the basic Golog constructs with the
exception of procedures the corresponding ALP constructs are summarized in fig-
ure 6.1. Golog programs δ are recursively expanded, simultaneously constructing

127

Chapter 6 Relation to Existing Work

a corresponding ALP. The expressions δ1, δ2 range over Golog subprograms in fig-
ure 6.1, and we let d1, d2 range over the rule heads of the respective ALP rules. For
every subprogram δ we have to introduce an auxiliary rule head atom p — of course
this has to be a fresh predicate symbols for every rule.

Golog Construct ALP Construct
Primitive Action a Do(a)

Tests Φ? ?(Phi)

Sequence δ1; δ2 p :- d1, d2.

Non-deterministic choice of arguments (πx)δ(x) p :- d(X).

Non-deterministic choice of actions δ1|δ2 p :- d1. p :- d2.

Non-deterministic iteration δ∗ p. p :- d, p.

Figure 6.1: Golog and ALP constructs

Translating Procedures Golog procedures are defined as expressions of the form
proc P (~x) δ endProc, consisting of a procedure name P , procedure arguments ~x,
and a procedure body δ that may use all the basic Golog constructs. In particular
the procedure body may include procedure calls like, e.g., a recursive call to the
procedure P itself. Procedure declarations are translated to ALPs without intro-
ducing an auxiliary rule head predicate symbol. Instead for the procedure P (~x) the
corresponding rule head will be p(X). The procedure body is expanded using the
translation depicted in figure 6.1, only that every procedure call P (~y) is translated
to p(Y).

Calling the Program The ALP corresponding to a Golog program δ is called by
submitting the auxiliary atom p corresponding to δ as a query.

Properties of the Translation We have given ALP analogons of basic Golog pro-
grams. Intuitively, we expect that there will be a successful Golog run if and only if
the corresponding ALP admits a successful derivation. Stating this formally, how-
ever, is not trivial. The difficulties arise because of the second order logical semantics
of Golog programs — these are the same difficulties that have so far precluded a
formal correctness result for the Golog interpreter. Hence, all we say here is that
ALPs provide programming constructs that appear to fit the same needs as the
programming constructs available in basic Golog.

Golog Interpreter as ALP From a different viewpoint, we can sidestep the issue
of relating the second order semantics of Golog with first order logic programs as

128

6.1 Golog

follows: The basic Golog interpreter is a logic program — hence it can be viewed
as an ALP. It is further possible to suitably insert the ALP primitives do and ?
into the defining clauses of Golog’s do for the case of primitive_action and holds.
The resulting ALP may then be regarded as a reconciliation of the procedural pro-
gramming style of Golog with the declarative programming paradigm underlying the
ALPs.

6.1.3 Advanced Golog Features and ALPs

The basic version of Golog has seen two main extensions: The first was the exten-
sion to ConGolog, a language that features interleaved concurrency and interrupts
[Giacomo et al., 2000]. In a second step ConGolog has been extended to IndiGolog,
a language that allows to switch between the online and the offline execution of
programs [Sardina et al., 2004].

For both these languages, the semantics has been given not by macro-expanding
programs to sets of logical formulas, but by an operational state transition semantics.
This semantics again has second order features (transitive closure), and moreover
requires the encoding of programs as terms in the language of the underlying action
theory.1

ALPs and Concurrency The lack of support for action domains with concurrent
actions is probably the main weakness of the ALP framework. It is also the area
where the transition semantics for Golog really shows its strengths. We leave the
extension of the ALP framework to concurrent actions, and possibly also interrupts
for reactive agents, as a challenge for future work.

Interleaving Online and Offline Execution of Programs The main innovation
of IndiGolog is the introduction of a search operator. An IndiGolog program is
executed in an online fashion, unless the search operator is used to do look-ahead
(i.e., planning). Here the main strength of IndiGolog is that it can be used to
generate plans that are epistemically adequate in the sense of section 3.6.2.

In the context of ALPs we have discussed the differences between online and offline
execution in section 3.7. In particular, the online execution of ALPs has been char-
acterized by restricting substitutions in the proof calculus to be non-disjunctive. We
have likewise characterized epistemically adequate planning via ALPs by restricting
disjunctive substitutions to sense fluents in section 3.6.2. Next we observe that the
distinction between online and offline execution is meta-logical. It is hence not hard

1On a sidenote, let us again shortly point out that this transition semantics again is readily
generalized by using the UAC for the underlying action theory.

129

Chapter 6 Relation to Existing Work

to imagine how the ALP proof calculus can be adapted to interleaved online and of-
fline execution: We can, e.g., introduce two reserved constants online and offline
into the language to switch between the respective modes of using the proof calculus.

Arguably, the technical apparatus underlying this ALP approach to interleaving
online and offline reasoning is simpler than that of IndiGolog — the definitive treat-
ment of the latter can be found in Sebastian Sardina’s PhD thesis [Sardina, 2005].

6.1.4 Golog Interpreter

In this section we first turn to the question whether the basic Golog interpreter can
be used for an implementation of the ALP framework.

This original interpreter for basic Golog [Levesque et al., 1997] is based on the fol-
lowing ideas: First, regress the situation formula to be proved to the initial situation
S0. Then evaluate the regressed formula against a representation of the initial state
by a set of Prolog facts. It is intuitively clear that this interpreter can be used for
implementing yet another fragment of the ALP framework.

There only is the minor nuisance that it is not entirely clear theoretically which ini-
tial situations can be represented in this fragment:2 The definition of a“closed initial
database” (cf. p. 97 of [Reiter, 2001a]) does not rule out the formula (∀x)F (x, S0) ≡
x = A ∨ F (x, S0). On the other hand, in the remarks following the definition it is
claimed that with a closed initial database“... one cannot say that F (A,S0) is all
that is known to be true of F .”. Even though this issue is of little practical relevance
(practically one just specifies the initial database by Prolog facts), it would be nice
to find out exactly which class of initial situations the basic Golog interpreter can
handle.

6.2 Flux

In this section we discuss the relation of the Flux language [Thielscher, 2005a,
Thielscher, 2005d], and the ALP framework. In particular, we discuss

• the semantics of Flux and ALPs;

• the use of Flux as reasoner for action domains within the ALP framework;

• the advanced features of Flux not yet present in ALPs; and

• the relation of Flux to our own implementation work.

2The following observation was made by Stephan Schiffel.

130

6.2 Flux

6.2.1 Semantics of Flux

Flux programs are full constraint logic programs together with an implementa-
tion of a fragment of the Fluent Calculus via constraint handling rules (CHR)
[Frühwirth, 1998]. Thus they may contain constructs like the cut and negation-
as-failure, and the semantics of Flux programs accordingly has been given in terms
of computation trees for constraint logic programs [Thielscher, 2005a].

Flux is closely tied to an earlier version of the Fluent Calculus that contains
an explicit axiomatization of a state [Thielscher, 2005d]: Flux programs contain
state terms, which do not exist in other action calculi. Let us illustrate this state
based version of the Fluent Calculus: For example, the formula Holds(F,State(s))
is expanded to

∃zState(s) = z ∧ ∃z′z = F ◦ z′,

where z, z′ are variables of sort State, and ◦ is the state forming operator. Due to
the presence of state terms it is not immediate to give a semantics for Flux programs
using a different action calculus than Fluent Calculus.

But the basic idea of Flux and ALPs is very similar: Use logic programs to define
the strategic behavior of an agent in a dynamic domain. The ALP framework can
be seen as a variant of the Flux language that

• admits a declarative, logical semantics;

• fully separates between action domain and strategy — there are no state up-
date commands in the strategy program; and

• can be instantiated by other action calculi than the Fluent Calculus.

6.2.2 Flux as Action Domain Reasoner for ALPs

We can make good use of the Flux kernel for implementing yet another fragment of
the ALP framework by making the following observations.

The presence of state terms in the language does not pose any real problems: In
[Drescher and Thielscher, 2007] it has been proved that every FO sentence can equiv-
alently be represented by a Fluent Calculus state formula (with state terms). This
observation can be adapted to the representation of UAC state formulas as Fluent
Calculus state formulas. Or we can use a result from [Schiffel and Thielscher, 2006]
that Fluent Calculus domains (again with state terms) can equivalently be repre-
sented in the Situation Calculus (and vice versa). Either way, it is clear that the
Fluent Calculus domains (with state terms) can be used to faithfully represent UAC
action domains.

The biggest problem is that the holds atom in Flux is implemented such that it
evaluates to true whenever it does not lead to a contradiction. But for ALPs we

131

Chapter 6 Relation to Existing Work

want that ? atoms evaluate to true only if they are entailed. For this we can use
something similar to the following:3

?(F) :- \+ not_holds(F).
?(neg F) :- \+ holds(F).

This is the same technique that is used in Flux for knowledge based programming
[Thielscher, 2005d].

Thus the Flux kernel can be used in an ALP implementation for representing ac-
tions, their effects, and state knowledge. Observe that the reasoning about state
knowledge in Flux is sound, but not complete — for the details of the nature
of incomplete reasoning in Flux the reader is referred to [Thielscher, 2005d] and
[Thielscher, 2002].

Let us now discuss the expressivity of state properties that can be used in Flux for
action preconditions, ?(Phi) queries, and for representing the agent’s state knowl-
edge:

Definition 6.1 (Flux-expressible state property). A state property is expressible in
Flux if it is of the form

(∃~x)
∧
i

ϕi ∧
∧
j

Ψj(~x)

where each ϕi is a Holds atom with variables among ~x and each Ψj(~x) (in the
original version of the Flux language) is one of the following:

• ¬ϕ, where ϕ is a Holds atom with variables among ~x; or

• (∀~y)¬ϕ, where ϕ is a Holds atom with variables among ~y; or

•
∨
k ϕk, where each ϕk is a Holds atom, or an equality with variables among ~x;

or

• an arithmetic finite domain constraint with variables among ~x.

In [Thielscher, 2005c] the Flux language has been extended to cover so-called uni-
versal and implicational constraints. These allow that Ψj(~x) can also be one of the
following:

• ϕ1 ⊃
∨
l ϕl, where each ϕi is a Holds atom, or an (in-)equality with variables

among ~x; or

• (∀~y)ϕ1 ⊃ ϕ2, where ϕ1 is a finite domain constraint with variables among ~y
and ϕ2 is a literal with variables ~y.

3Note that in Flux we can only query single fluents.

132

6.2 Flux

Flux deals with arithmetic by using the finite domain constraint libraries of
ECLiPSe Prolog. With regard to both expressivity and practical efficiency of the
language this constitutes a big advantage. Let us hence point out again that our
ALP framework already features the same expressive means. In particular, this
means we may use the same finite domain constraint libraries that Flux is using
to supplement our ABox update and ALPprolog implementations — or any other
future implementation of a fragment of the ALP framework.

Next observe that for the Flux language with arbitrary terms as fluents reasoning
about a single state is tractable — disregarding the arithmetic constraints. This
has first been made formally precise by Hannes Straß.4 This is quite a striking con-
trast with ALPprolog (NP-complete), and ABox update (PSpace- or NExpTime-
complete).

6.2.3 Advanced Features of Flux

Let us comment briefly on the non-logical features available in Flux: We have already
discussed how the ALP framework can be extended by incorporating negation as
finite failure, and by subsequently appealing to the soundness and (restricted) com-
pleteness results for the CLP(X)-scheme — cf. section 3.3.3. The other non-logical
feature of Flux, namely the cut, is very useful for programming agent strategies
that are meant for online execution, where backtracking simply is not possible. But
ALPs already feature a principled distinction between online and offline reasoning.
Making the cut available in ALPs will preclude a completeness result. If combined
with negation as failure it will even preclude a soundness result [J.W. Lloyd, 1987].

The formalize notion of knowledge in Fluent Calculus (and also Flux) allows to
make an interesting distinction: We can distinguish an agent not knowing something
from an agent that knows that this something is not the case. In the plain ALP
framework this distinction is not possible: We read neg ?(Phi) as ?(neg Phi) (cf.
section 3.3.3 on negation as finite failure).

Flux has also been applied to model action domains that are not modular, i.e.
with implicit preconditions (so-called qualifications), and implicit effects (so-called
ramifications) [Thielscher, 2005d]. The former have been modeled via Default Logic,
whereas the latter appeal to the transitive closure of so-called causal relationships.
In both cases second order notions are involved — something we so far try to avoid
in the ALP framework. However, if the action domains used in practical implemen-
tations are not modular, then both these issues have to be addressed. Incorporating
default reasoning about action effects in planning problems formulated in the UAC
is the subject of ongoing work [Straß and Thielscher, 2009] — once this has been
achieved ALPs at least theoretically can also be used for planning atop of action

4Personal Communication.

133

Chapter 6 Relation to Existing Work

domains with implicit effects.
Finally, Flux has also been used to infer epistemically adequate conditional plans

[Thielscher, 2001, Thielscher, 2005d]. This, however, was done using an extension of
the underlying action formalism — the notion of actions was generalized to complex
actions as terms of the language. Arguably, here the ALP formulation is more
elegant — but Flux has the indisputable advantage of an existing implementation.

6.3 Domain-independent Planners

In this section we discuss the relation of the ALP framework to the existing work on
domain-independent planning systems. Let us first recall the generic formulation of
a planning problem as an ALP (cf. example 3.1):

strategy :- ?(goal).
strategy :- do(A), strategy.

This program uses the simplest possible strategy to find a plan — no domain
dependent heuristics have been included. Of course, we can solve such a planning
problem using the ALP proof calculi: The soundness and completeness results assure
us that we will eventually find the solution (if it exists). However, for this generic
ALP we may be able to find the solution much faster if we use a planner, since
over the last decades much research effort went into the development of efficient,
domain-independent planners. Of course, for this the planning language has to be
expressible in the UAC — and vice versa, the action domain has to be expressible
in the planning language.

Research in specialized planning languages originates with the STRIPS language
[Fikes and Nilsson, 1971]. Over the years this basic language for specifying plan-
ning problems has seen numerous expressive extensions: first to the language ADL
[Pednault, 1989] and then to PDDL [Ghallab et al., 1998], the ever growing language
that underlies the annual planning competitions.

Traditionally the semantics of planning languages is given in terms of state transi-
tions. There also is a parallel line of research that seeks to provide a logical semantics
for planning languages. Usually this is done by mapping the planning problems of a
given planning language to an equivalent representation in a (fragment of a) logic-
based action calculus. Now if the action theory D underlying the generic planning
ALP is in (or, can be mapped to) the corresponding fragment then we can resort to
dedicated planning software for the evaluation of the generic planning ALP.

Such complementary semantics have already been developed both for STRIPS
[Lifschitz, 1986, Lin and Reiter, 1995] and the more expressive ADL [Pednault, 1994,
Claßen and Lakemeyer, 2006, Thielscher, 2007]. Both STRIPS and ADL planning
domains hence fall within the ALP framework, and hence the existing mature

134

6.4 Future Action Domain Reasoners

implementations can be used. There are also recent works [Claßen et al., 2007b,
Claßen et al., 2007a] that aim at successively covering all of the semantics of PDDL
2.1 [Fox and Long, 2003]. These works, however, deal with a planning language that
features concurrent actions — this does not fit the requirement that action domains
underlying ALPs should be sequential for planning completeness (cf. definition 3.8).

In [Drescher and Thielscher, 2008] we have given a Fluent Calculus semantics for
the fragment of PDDL 3.0 consisting of basic ADL and plan constraints that have
been introduced to PDDL 3.0 in [Gerevini and Long, 2006]. This fragment again
lies within the range of the ALP framework. Only a minor tweak on the definition
of a state property and macro-expansion is required: We want to express planning
goals like, e.g., (∃s)φ(s)∧¬(∃s′)s′ ≤ s∧ψ(s′) — stating that on our way to the goal
φ(s) at no intermediate timepoint s′ the state property ψ(s′) held.

But maybe we want to use action domains D that are beyond the range of today’s
planners together with the generic planning ALP. Then it may still be possible to
use some of the ideas underlying the fastest planners to date: Modern planners for
example use simplified approximations of the planning problem (e.g., by ignoring the
negative effects of actions) to derive a heuristics for picking actions to solve the full
planning problem. Adapting these ideas, and implementing them, so that they can
be put to use in fully general UAC planning domains is also left as a nice research
challenge for future work.

6.4 Future Action Domain Reasoners

In this section we give some pointers to recent theoretical advances that may result
in future, practically efficient action domain reasoners.

6.4.1 Progression in Situation Calculus

To date the dominant reasoning method in the Situation Calculus is regression,
not progression (for an informal introduction to pro- and regression cf. chapter
??). The theoretical work on progression in the Situation Calculus originates with
[Lin and Reiter, 1997], where it was conjectured that progression in general is not
first order definable, but needs second order logic. This conjecture has only recently
been confirmed [Vassos and Levesque, 2008].

But in the same thrust of research also important classes of action domains in
the Situation Calculus have been identified for which progression indeed is first
order definable. The point that empirically progression seems to behave better in
implementations than regression, has also surfaced in this thesis — especially in
chapter 4. Hence the recent theoretical advances on progression in the Situation
Calculus are quite promising. A PhD-thesis entirely concerned with the theoretical

135

Chapter 6 Relation to Existing Work

aspects of progression is that of Stavros Vassos [Vassos, 2009] — the most recent
results wrt. progression can be found in [Liu and Lakemeyer, 2009].

6.4.2 Proper Knowledge Bases and Situation Calculus

Levesque has introduced the notion of evaluation-based reasoning with disjunctive
knowledge. The aim of this work is to have open world knowledge bases that admit
reasoning as efficient as classical, closed world relational databases [Levesque, 1998,
Liu and Levesque, 2003] — such a knowledge base is called a proper KB.

In [Liu and Levesque, 2005, Liu and Lakemeyer, 2009] it has been shown that
proper KBs can be progressed, i.e. we can use an update algorithm rather than
the regression algorithm usually employed in Golog implementations. Since empiri-
cally progression is superior to regression, and reasoning with proper KBs moreover
is tractable, an actual implementation of Golog or the ALP framework based on the
respective ideas appears to be very promising.

136

7 Conclusion

Let us now conclude our work. We will first give a summary of what we have
achieved. Then we will give some pointers to interesting future work and open
problems.

7.1 Summary

In this thesis we have presented Action Logic Programs — that is, we have proposed
to use classical first order Horn clauses to specify strategies for

• the online control of agents, and

• offline planning,

both in dynamic domains represented by an axiomatization in an action calcu-
lus. The ALP framework stands apart from existing agent control languages by
its straightforward declarative semantics — the classical FO semantics — and by
not being tied to a particular action calculus.

We have identified the notion of a query-complete action domain — these are ex-
actly those domains that can be combined with Prolog in a straightforward manner.
If a planning problem in a query-complete domain has a solution then this plan is
unconditional.

We have also presented sound and complete proof calculi: The LP(D) proof cal-
culus for action domains that are query-complete, and the CLP(D) proof calculus
for action domains that are not. These proof calculi appeal to ideas from classical
(constraint) logic programming. In particular, these proof calculi together with a
generic planning ALP provide a neat characterization of

• conditional planning (full CLP(D) calculus), and

• conformant planning (LP(D) proof calculus on arbitrary action domains),

both for action domains specified using full first order logic. Previous logical char-
acterizations of these planning notions using, e.g., classical propositional logic or
quantified Boolean formulas were limited to the propositional case.

We have also provided a novel and particularly simple approach to model planning
in the presence of sensing actions: We use domain constraints to express the possible
sensing results together with their meanings. By imposing simple restrictions on the

137

Chapter 7 Conclusion

proof calculi ALPs can also be used to generate plans that are epistemically adequate
for agents equipped with sensors.

The ALP framework can also be used for interleaving the online execution of
strategies with the offline generation of epistemically adequate plans.

For two fragments of the general framework we have developed implementations
aimed at the online control of agents:

The first of these is ALPprolog. ALPprolog is based on a syntactic variant of
propositional logic and a concise state representation using prime implicates. It ex-
ploits our modeling of sensing actions via domain constraints. ALPprolog has proven
to be considerably more efficient then the existing implementations of the logic-based
action programming languages Golog and Flux on essentially propositional action
domains that are supported by all three languages.

The second implementation we presented is based on a fragment of the Fluent
Calculus where we use DL ABoxes to represent state knowledge. In the absence of
competitors this implementation is harder to evaluate. On the one hand our im-
plementation of the theoretically exponential ABox update proved to be practically
superior to the theoretically polynomial so-called projective ABox update — this
was a pleasant surprise. On the other hand our implementation still has its limita-
tions. The variant that uses ALCO@ as underlying DL suffers from problems with
keeping the state representation small, and the variant based on ALCO+ suffers
from the absence of a truly satisfactory reasoner.

7.2 Directions for Future Work

There are a number of interesting directions for future work:
Clearly it would be nice to have a fast reasoner for Boolean ALCO+ ABoxes in

order to fully exploit the potential of ABox update. But the most important task
on the implementation side is to develop support for conditional planning problems.

On the theoretical side the following generalization of the ALP framework poses
some interesting research questions: How can we accommodate concurrent actions
in the underlying action domains? Is this even feasible while retaining the logical
semantics, or is a transition semantics like that of Golog really called for?

138

Bibliography

[Andrews, 1986] Andrews, P. B. (1986). An Introduction to Mathematical Logic and
Type Theory: To Truth Through Proof. Computer Science and Applied Mathe-
matics. Academic Press, Orlando, FL.

[Apt, 1996] Apt, K. R. (1996). From logic programming to Prolog. Prentice-Hall.

[Areces et al., 1999] Areces, Blackburn, and Marx (1999). A road-map on complex-
ity for hybrid logics. In CSL: 13th Workshop on Computer Science Logic. LNCS,
Springer-Verlag.

[Areces and de Rijke, 2001] Areces, C. and de Rijke, M. (2001). From Description
Logics to Hybrid Logics, and Back. In Advances in Modal Logic.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P. F., editors (2003). The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press.

[Baader et al., 2005] Baader, F., Lutz, C., Milicic, M., Sattler, U., and Wolter,
F. (2005). Integrating description logics and action formalisms: First results.
In Proceedings of the Twentieth National Conference on Artificial Intelligence
(AAAI 2005), Pittsburgh, Pennsylvania. AAAI Press.

[Baader and Peñaloza, 2008] Baader, F. and Peñaloza, R. (2008). Automata-Based
Axiom Pinpointing. In Proceedings of the 4th International Joint Conference on
Automated Reasoning, (IJCAR 2008). Springer.

[Baral, 2003] Baral, C. (2003). Knowledge Representation, Reasoning, and Declar-
ative Problem Solving. Cambridge University Press, Cambridge, England.

[Baumgartner et al., 1997] Baumgartner, P., Furbach, U., and Stolzenburg, F.
(1997). Computing answers with model elimination. Artificial Intelligence, 90(1–
2):135–176.

[Bibel, 1986] Bibel, W. (1986). A deductive solution for plan generation. New
Generation Computing, 4:115–132.

[Bibel, 1998] Bibel, W. (1998). Let’s plan it deductively! Artificial Intelligence,
103(1–2):183–208.

139

Bibliography

[Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal
Logic. Cambridge University Press.

[Bong, 2007] Bong, Y. (2007). Description Logic ABox Updates Revisited. Master
thesis, TU Dresden, Germany.

[Bordini et al., 2007] Bordini, R., Hübner, J., and Wooldridge, M. (2007). Program-
ming Multi-Agent Systems in AgentSpeak using Jason. Wiley.

[Borgida, 1996] Borgida, A. (1996). On the relative expressiveness of description
logics and predicate logics. Artificial Intelligence, 82(1-2):353–367.

[Brewka et al., 2008] Brewka, G., Niemelä, I., and Truszczýnski, M. (2008). Non-
monotonic reasoning. In van Harmelen, F., Lifschitz, V., and Porter, B., editors,
Handbook of Knowledge Representation, chapter 6, pages 239–284. Elsevier Sci-
ence, Amsterdam.

[Brouwer, 1907] Brouwer, L. E. J. (1907). Over de Grondslagen der Wiskunde. PhD
thesis, University of Amsterdam. English translation in L.E.J. Brouwer: Collected
Works 1: Philosophy and Foundations of Mathematics (A. Heyting, Editor), El-
sevier, Amsterdam and New York, 1975.

[Burhans and Shapiro, 2007] Burhans, D. T. and Shapiro, S. C. (2007). Defining
Answer Classes Using Resolution Refutation. Journal of Applied Logic, 5(1):70–
91.

[Castilho et al., 1999] Castilho, M. A., Gasquet, O., and Herzig, A. (1999). Formal-
izing action and change in modal logic I: The frame problem. Journal of Logic
and Computation, 9(5):701–735.

[Chang and Keisler, 1990] Chang, C. C. and Keisler, H. J. (1990). Model Theory.
North Holland.

[Clark, 1978] Clark, K. L. (1978). Negation as Failure. In Gallaire, H. and Minker,
J., editors, Logic and Data Bases, pages 293–322. Plenum Press.

[Claßen et al., 2007a] Claßen, J., Eyerich, P., Lakemeyer, G., and Nebel, B. (2007a).
Towards an integration of golog and planning. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI 07), Hyderabad,
India.

[Claßen et al., 2007b] Claßen, J., Hu, Y., and Lakemeyer, G. (2007b). A situation-
calculus semantics for an expressive fragment of PDDL. In Proceedings of the
Twenty-second National Conference on Artificial Intelligence (AAAI 2007), Menlo
Park, CA.

140

Bibliography

[Claßen and Lakemeyer, 2006] Claßen, J. and Lakemeyer, G. (2006). A semantics
for ADL as progression in the situation calculus. In Proceedings of the 11th Inter-
national Workshop on Non-Monotonic Reasoning (NMR06), Lake District, UK.

[Clocksin and Mellish, 1987] Clocksin, W. F. and Mellish, C. (1987). Programming
in Prolog, 3rd Edition. Springer.

[Davis, 1993] Davis, M. (1993). First order logic. In Gabbay, D., Hogger, C. J., and
Robinson, J. A., editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, chapter 2, pages 31–65. Oxford University Press.

[Davis et al., 1962] Davis, M., Logemann, G., and Loveland, D. (1962). A Machine
Program for Theorem-proving. Communications of the ACM.

[Davis and Putnam, 1960] Davis, M. and Putnam, H. (1960). A Computing Proce-
dure for Quantification Theory. Journal of the ACM.

[de Moura and Bjørner, 2008] de Moura, L. and Bjørner, N. (2008). Z3: An effi-
cient SMT Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008. Springer.

[Doherty et al., 1998] Doherty, P., Lukaszewicz, W., and Madalinska-Bugaj, E.
(1998). The pma and relativizing minimal change for action update. In Proceedings
of the Sixth International Conference on Principles of Knowledge Representation
and Reasoning (KR 98), Trento, Italy. AAAI Press.

[Drescher et al., 2009] Drescher, C., Liu, H., Baader, F., Guhlemann, S., Petersohn,
U., Steinke, P., and Thielscher, M. (2009). Putting abox updates into action. In
Proceedings of the Seventh International Symposion on Frontiers of Combining
Systems (FroCoS 2009), Trento, Italy.

[Drescher and Thielscher, 2007] Drescher, C. and Thielscher, M. (2007). Integrating
action calculi and description logics. In Proceedings of the 30th Annual German
Conference on Artificial Intelligence (KI 2007), Osnabrück, Germany.

[Drescher and Thielscher, 2008] Drescher, C. and Thielscher, M. (2008). A fluent
calculus semantics for ADL with plan constraints. In Proceedings of the 11th
European Conference on Logics in Artificial Intelligence” JELIA08 28 - October
1, 2008. Proceedings, Dresden, Germany. Springer.

[Dummett, 1977] Dummett, M. (1977). Elements of Intuitionism. Oxford University
Press, Oxford.

[Ebbinghaus and Flum, 1995] Ebbinghaus, H.-D. and Flum, J. (1995). Finite Model
Theory. Perspectives in Mathematical Logic. Springer.

141

Bibliography

[Ebbinghaus et al., 1994] Ebbinghaus, H.-D., Flum, J., and Thomas, W. (1994).
Mathematical Logic. Undergraduate Texts in Mathematics. Springer-Verlag,
Berlin, 2nd edition. (1st ed., 1984).

[ECLiPSe Implementors Group, 2009] ECLiPSe Implementors Group (2009).
ECLiPSe User Manual. http://www.eclipse-clp.org.

[Een and Sörensson, 2003] Een, N. and Sörensson, N. (2003). An Extensible SAT-
solver. In International Conference on Theory and Applications of Satisfiability
Testing (SAT).

[Enderton, 1972] Enderton, H. B. (1972). A Mathematical Introduction to Logic.
Academic Press.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new
approach to the application of theorem proving to problem solving. Artificial
Intelligence, 2:189–208.

[Fox and Long, 2003] Fox, M. and Long, D. (2003). PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal of Artificial Intelligence
Research, 20:61–124.

[Frege, 1879] Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. Halle. English translation in From Frege to
Gödel, a Source Book in Mathematical Logic (J. van Heijenoort, Editor), Harvard
University Press, Cambridge, 1967, 1–82.

[Frühwirth, 1998] Frühwirth, T. (1998). Theory and Practice of Constraint Handling
Rules. Journal of Logic Programming, 37(1-3).

[Frühwirth and Abdennadher, 2003] Frühwirth, T. and Abdennadher, S. (2003). Es-
sentials of Constraint Programming. Springer.

[Gabbay et al., 1998] Gabbay, D., Hogger, C., and Robinson, J. A., editors (1992-
1998). Handbook of Logic in Artificial Intelligence and Logic Programming, Vol-
umes 1-5. Oxford University Press, Oxford.

[Gelfond and Lifschitz, 1992] Gelfond, M. and Lifschitz, V. (1992). Describing ac-
tion and change by logic programs. In Proceedings of the Joint International
Conference and Symposium on Logic Programming (ICLP-92), Washington, DC.

[Genesereth et al., 2005] Genesereth, M. R., Love, N., and Pell, B. (2005). General
game playing: Overview of the AAAI competition. AI magazine, 26(2):62–72.

142

http://www.eclipse-clp.org

Bibliography

[Gerevini and Long, 2006] Gerevini, A. and Long, D. (2006). Preferences and soft
constraints in pddl3. In Proceedings of the ICAPS-2006 Workshop on Preferences
and Soft Constraints in Planning, Lake District of the UK.

[Ghallab et al., 1998] Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram,
A., Veloso, M., Weld, D., and Wilkins, D. (1998). PDDL—the planning domain
definition language.

[Giacomo et al., 2000] Giacomo, G. D., Lespérance, Y., and Levesque, H. J. (2000).
Congolog, a concurrent programming language based on the situation calculus.
Artificial Intelligence, 121(1-2):109–169.

[Girard, 1987] Girard, J. (1987). Linear logic. Journal of Theoretical Computer
Science, 50:1–102.

[Girard, 2001] Girard, J.-Y. (2001). Locus solum: From the rules of logic to the
logic of rules. Mathematical Structures in Computer Science, 11(3):301–506.

[Gödel, 1930] Gödel, K. (1930). Über die Vollständigkeit des Logikkalküls. PhD
thesis, University of Vienna.

[Götzmann, 2009] Götzmann, D. (2009). Spartacus: A tableau prover for hybrid
logic. Master thesis, Saarland University, Germany.

[Green, 1969] Green, C. (1969). Theorem proving by resolution as a basis for
question-answering systems. Machine Intelligence, 4:183–205.

[Herzig and Varzinczak, 2007] Herzig, A. and Varzinczak, I. (2007). Metatheory of
actions: Beyond consistency. Artificial Intelligence, 171(16–17):951–984.

[Hill, 1974] Hill, R. (1974). LUSH resolution and its completeness. Technical Report
DCL Memo 78, Department of Artificial Intelligence, University of Edinburgh.

[Hodges, 1997] Hodges, W. (1997). A Shorter Model Theory. Cambridge University
Press.

[Hölldobler and Schneeberger, 1990] Hölldobler, S. and Schneeberger, J. (1990). A
new deductive approach to planning. New Generation Computing, 8:225–244.

[Horrocks and Voronkov, 2006] Horrocks, I. and Voronkov, A. (2006). Reasoning
support for expressive ontology languages using a theorem prover. In Proceedings
of the 4th International Symposion on the Foundations of Information and Knowl-
edge Systems (FoIKS 2006), Lecture Notes in Computer Science, pages 201–218,
Budapest, Hungary. Springer.

143

Bibliography

[Jaffar and Lassez, 1987] Jaffar, J. and Lassez, J.-L. (1987). Constraint logic pro-
gramming. In Proceedings of the 14th ACM Principles of Programming Languages
Conference, Munich.

[Jaffar et al., 1998] Jaffar, J., Maher, M. J., Marriott, K., and Stuckey, P. J. (1998).
The semantics of constraint logic programs. Journal of Logic Programming, 37(1-
3):1–46.

[J.W. Lloyd, 1987] J.W. Lloyd (1987). Foundations of Logic Programming. Springer.

[Kazakov and Motik, 2008] Kazakov, Y. and Motik, B. (2008). A Resolution-Based
Decision Procedure for SHOIQ. Journal of Automated Reasoning.

[Kowalski and Sergot, 1986] Kowalski, R. A. and Sergot, M. J. (1986). A Logic-
Based Calculus of Events. New Generation Computing, 4:67–95.

[Lakemeyer and Levesque, 2004] Lakemeyer, G. and Levesque, H. J. (2004). Situa-
tions, si! situation terms, no! In Proceedings of the Ninth International Conference
on Principles of Knowledge Representation and Reasoning (KR 04), Whistler,
Canada. AAAI Press.

[Lakemeyer and Levesque, 2005] Lakemeyer, G. and Levesque, H. J. (2005). Seman-
tics for a useful fragment of the situation calculus. In Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI 05), Edinburgh,
Scotland.

[Leivant, 1994] Leivant, D. (1994). Higher order logic. In Gabbay, D. M., Hogger,
C. J., and Robinson, J. A., editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 1: Deduction Methodologies, pages 229–322. Oxford
University Press.

[Levesque et al., 1997] Levesque, H., Reiter, R., Lespérance, Y., Lin, F., and Scherl,
R. (1997). GOLOG: A logic programming language for dynamic domains. Journal
of Logic Programming, 31(1–3):59–83.

[Levesque, 1996] Levesque, H. J. (1996). What is planning in the presence of sens-
ing? In Proceedings of the Thirteenth National Conference on Artificial Intelli-
gence (AAAI 1996), pages 1139–1146, Portland, Oregon, USA.

[Levesque, 1998] Levesque, H. J. (1998). A completeness result for reasoning with
incomplete first-order knowledge bases. In Proceedings of the Sixth International
Conference on Principles of Knowledge Representation and Reasoning (KR 98),
San Francisco, California.

144

Bibliography

[Lifschitz, 1986] Lifschitz, V. (1986). On the semantics of STRIPS. In Reasoning
about actions and plans: Proceeding of 1986 workshop, Temberline, Oregon.

[Lifschitz, 1994] Lifschitz, V. (1994). Circumscription. In Gabbay, D., Hogger, C.,
and Robinson, A., editors, Handbook of Logic in AI and Logic Programming,
volume 3, pages 298–352. Oxford University Press.

[Lifschitz et al., 2007] Lifschitz, V., Porter, B., and van Harmelen, F., editors
(2007). Handbook of Knowledge Representation. Elsevier.

[Lin and Reiter, 1995] Lin, F. and Reiter, R. (1995). How to Progress a Database II:
The strips Connection. In Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI 95), Montreal, Canada. Morgan Kauf-
mann.

[Lin and Reiter, 1997] Lin, F. and Reiter, R. (1997). How to progress a database.
Artificial Intelligence, 92(1–2):131–167.

[Liu, 2009] Liu, H. (2009). Updating Description Logic ABoxes. PhD thesis, Dresden
University of Technology, Germany.

[Liu et al., 2006] Liu, H., Lutz, C., Milicic, M., and Wolter, F. (2006). Updating
description logic ABoxes. In Proceedings of the Tenth International Conference
on Principles of Knowledge Representation and Reasoning (KR 06), Lake District
of the UK.

[Liu and Lakemeyer, 2009] Liu, Y. and Lakemeyer, G. (2009). On first-order de-
finability and computability of progression for local-effect actions and beyond.
In Proceedings of the Twenty-first International Joint Conference on Artificial
Intelligence (IJCAI 09), Pasadena, California, USA.

[Liu et al., 2004] Liu, Y., Lakemeyer, G., and Levesque, H. J. (2004). A logic of
limited belief for reasoning with disjunctive information. In Proceedings of the
Ninth International Conference on Principles of Knowledge Representation and
Reasoning (KR 04). AAAI Press, Menlo Park, California.

[Liu and Levesque, 2003] Liu, Y. and Levesque, H. J. (2003). A tractability result
for reasoning with incomplete first-order knowledge bases. In Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (IJCAI 03),
Acapulco, Mexico.

[Liu and Levesque, 2005] Liu, Y. and Levesque, H. J. (2005). Tractable reasoning
with incomplete first-order knowledge in dynamic systems with context-dependent
actions. In Proceedings of the Nineteenth International Joint Conference on Ar-
tificial Intelligence (IJCAI 05), Edinburgh, Scotland, UK.

145

Bibliography

[Love et al., 2008] Love, N., Hinrichs, T., Haley, D., Schkufza, E., and Genesereth,
M. (2008). General game playing: Game description language specification. Tech-
nical report, Stanford University.

[Manna and Waldinger, 1987] Manna, Z. and Waldinger, R. J. (1987). How to clear
a block: A theory of plans. Journal of Automated Reasoning, 3(4):343–377.

[Mascardi et al., 2005] Mascardi, V., Demergasso, D., and Ancona, D. (2005). Lan-
guages for programming BDI-style agents: an overview. In 6th Workshop on From
Objects to Agents, Camerino, Italy.

[McCarthy, 1963] McCarthy, J. (1963). Situations and Actions and Causal Laws.
Stanford Artificial Intelligence Project, Memo 2, Stanford University, CA.

[McCarthy, 1980] McCarthy, J. (1980). Circumscription—A Form of Non-
Monotonic Reasoning. Artificial Intelligence, 13(1–2):27–39.

[McCarthy and Hayes, 1969] McCarthy, J. and Hayes, P. J. (1969). Some philo-
sophical problems from the standpoint of artificial intelligence. In Meltzer, B. and
Michie, D., editors, Machine Intelligence 4, pages 463–502. Edinburgh University
Press.

[McCune, 2003] McCune, W. (2003). OTTER 3.3 Manual. Computing Research
Repository.

[Milicic, 2008] Milicic, M. (2008). Action, Time, and Space in Description Logics.
PhD thesis, Dresden University of Technology, Germany.

[Miller and Shanahan, 2002] Miller, R. and Shanahan, M. (2002). Some alterna-
tive formulations of the event calculus. In Kakas, A. C. and Sadri, F., editors,
Computational Logic. Logic Programming and Beyond, pages 452–490. Springer.

[Mueller, 2006] Mueller, E. T. (2006). Commonsense Reasoning. Morgan Kaufmann.

[Nieuwenhuis et al., 2007] Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.,
and Rubio, A. (2007). Challenges in Satisfiability Modulo Theories. In 18th
International Conference on Term Rewriting and Applications. Springer.

[Nonnengart and Weidenbach, 2001] Nonnengart, A. and Weidenbach, C. (2001).
Computing small clause normal forms. In Robinson, A. and Voronkov, A., editors,
Handbook of Automated Reasoning, volume I, chapter 6, pages 335–367. Elsevier
Science B.V.

[O’Keefe, 1990] O’Keefe, R. A. (1990). The Craft of Prolog. MIT Press.

146

Bibliography

[Pednault, 1989] Pednault, E. P. D. (1989). ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Proceedings of the First International
Conference on Principles of Knowledge Representation and Reasoning (KR 89),
San Mateo, California.

[Pednault, 1994] Pednault, E. P. D. (1994). ADL and the state-transition model of
action. Journal of Logic and Computation, 4(5):467–512.

[Pirri and Reiter, 1999] Pirri, F. and Reiter, R. (1999). Some contributions to the
metatheory of the situation calculus. Journal of the ACM, 46(3):325–361.

[Pratt-Hartmann, 2005] Pratt-Hartmann, I. (2005). Complexity of the two-variable
fragment with counting quantifiers. Journal of Logic, Language, and Information,
14(3):369–395.

[Reiter, 1991] Reiter, R. (1991). The frame problem in the situation calculus: A
simple solution (sometimes) and a completeness result for goal regression. In Lifs-
chitz, V., editor, Artificial Intelligence and Mathematical Theory of Computation,
pages 359–380. Academic Press.

[Reiter, 2001a] Reiter, R. (2001a). Knowledge in Action. MIT Press.

[Reiter, 2001b] Reiter, R. (2001b). Knowledge in Action: Logical Foundations for
Describing and Implementing Dynamical Systems. MIT Press, Cambridge, MA.

[Restall, 2000] Restall, G. (2000). An Introduction to Substructural Logics. Rout-
ledge.

[Robinson, 2000] Robinson, J. A. (2000). Computational logic: Memories of the past
and challenges for the future. In Proceedings of the First International Conference
on Computational Logic (CL 2000), London, UK. Springer.

[Russell and Norvig, 2003] Russell, S. J. and Norvig, P. (2003). Artificial Intelli-
gence: a modern approach. Prentice Hall, Upper Saddle River, N.J., 2nd interna-
tional edition edition.

[Sardina, 2005] Sardina, S. (2005). Deliberation in Agent Programming Languages.
PhD thesis, Department of Computer Science.

[Sardina et al., 2004] Sardina, S., De Giacomo, G., Lespérance, Y., and Levesque,
H. J. (2004). On the semantics of deliberation in IndiGolog – From theory to
implementation. Annals of Mathematics and Artificial Intelligence, 41(2–4):259–
299.

147

Bibliography

[Sardiña et al., 2004] Sardiña, S., Giacomo, G. D., Lespérance, Y., and Levesque,
H. J. (2004). On ability to autonomously execute agent programs with sensing.
In Proceedings of the 4th International Workshop on Cognitive Robotics (CoRobo-
04), Valencia,Spain. IEEE Computer Society.

[Savelli, 2006] Savelli, F. (2006). Existential assertions and quantum levels on the
tree of the situation calculus. Artificial Intelligence, 170(2):643–652.

[Schaerf, 1994] Schaerf, A. (1994). Reasoning with individuals in concept languages.
Data and Knowledge Engineering, 13:141–176.

[Scherl and Levesque, 2003] Scherl, R. B. and Levesque, H. (2003). Knowledge, ac-
tion, and the frame problem. Artificial Intelligence, 144(1–2):1–39.

[Schiffel and Thielscher, 2006] Schiffel, S. and Thielscher, M. (2006). Reconciling
situation calculus and fluent calculus. In Proceedings of the Twenty-first National
Conference on Artificial Intelligence (AAAI 2006), Boston, MA. AAAI Press.

[Schiffel and Thielscher, 2007] Schiffel, S. and Thielscher, M. (2007). Fluxplayer:
A successful general game player. In Proceedings of the Twenty-second National
Conference on Artificial Intelligence (AAAI 2007), Menlo Park, CA. AAAI Press.

[Schlobach, 2003] Schlobach, S. (2003). Non-Standard Reasoning Services for the
Debugging of Description Logic Terminologies. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, (IJCAI-03). Morgan
Kaufmann.

[Schmidt and Tishkovsky, 2007] Schmidt, R. A. and Tishkovsky, D. (2007). Using
tableau to decide expressive description logics with role negation. In Proceedings
of the 6th International Semantic Web Conference, ISWC 2007. Springer.

[Shanahan, 1995] Shanahan, M. (1995). A circumscriptive calculus of events. Arti-
ficial Intelligence, 77(2):251–284.

[Shanahan, 1997] Shanahan, M. (1997). Solving the Frame Problem. MIT Press,
Cambridge, Massachusetts.

[Shanahan, 2000] Shanahan, M. (2000). An abductive event calculus planner. Jour-
nal of Logic Programming, 44(1-3):207–240.

[Shanahan, 2002] Shanahan, M. (2002). A logical account of perception incorporat-
ing feedback and expectation. In Proceedings of the Eighth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR 02). Morgan
Kaufmann, San Francisco, California.

148

Bibliography

[Shanahan and Randell, 2004] Shanahan, M. and Randell, D. A. (2004). A logic-
based formulation of active visual perception. In Proceedings of the Ninth Inter-
national Conference on Principles of Knowledge Representation and Reasoning
(KR 04).

[Shanahan and Witkowski, 2000] Shanahan, M. and Witkowski, M. (2000). High-
level robot control through logic. In Proceedings of the International Workshop
on Agent Theories, Architectures and Languages (ATAL), Boston, MA.

[Shapiro, 1991] Shapiro, S. (1991). Foundations without Foundationalism: A case
for second-order logic. Oxford University Press.

[Shoenfield, 1967] Shoenfield, J. R. (1967). Mathematical Logic. Addison-Wesley,
Reading, MA.

[Sirin et al., 2007] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y.
(2007). Pellet: A practical OWL-DL reasoner. Journal of Web Semantics.

[Spark Implementors Group, 2009] Spark Implementors Group (2009). Spark Ref-
erence Manual. http://www.ai.sri.com/~spark.

[Stärk, 1990] Stärk, R. F. (1990). A direct proof for the completeness of SLD-
resolution. In Third Workshop on Computer Science Logic.

[Straß and Thielscher, 2009] Straß, H. and Thielscher, M. (2009). Simple default
reasoning in theories of action. In Proceedings of the 22nd Australasian Joint
Conference on Artificial Intelligence(AI09), Melbourne, Australia.

[Thielscher, 1999a] Thielscher, M. (1999a). From Situation Calculus to Fluent Cal-
culus: State update axioms as a solution to the inferential frame problem. Artifi-
cial Intelligence, 111(1–2):277–299.

[Thielscher, 1999b] Thielscher, M. (1999b). From situation calculus to fluent calcu-
lus: State update axioms as a solution to the inferential frame problem. Artificial
Intelligence, 111(1–2):277–299.

[Thielscher, 1999c] Thielscher, M. (1999c). From situation calculus to fluent calcu-
lus: State update axioms as a solution to the inferential frame problem. Artificial
Intelligence, 111(1–2):277–299.

[Thielscher, 2000] Thielscher, M. (2000). Representing the knowledge of a robot. In
Proceedings of the Seventh International Conference on Principles of Knowledge
Representation and Reasoning (KR 00), Breckenridge, CO. AAAI Press.

149

http://www.ai.sri.com/~spark

Bibliography

[Thielscher, 2001] Thielscher, M. (2001). Inferring implicit state knowledge and
plans with sensing actions. In Baader, F., Brewka, G., and Eiter, T., editors,
Proceedings of the German Annual Conference on Artificial Intelligence (KI),
volume 2174 of LNAI, pages 366–380, Vienna, Austria. Springer.

[Thielscher, 2002] Thielscher, M. (2002). Reasoning about actions with CHRs and
finite domain constraints. In Stuckey, P., editor, Proceedings of the International
Conference on Logic Programming (ICLP), volume 2401 of LNCS, pages 70–84,
Copenhagen, Danmark. Springer.

[Thielscher, 2004] Thielscher, M. (2004). Logic-based agents and the frame problem:
A case for progression. In Hendricks, V., editor, First-Order Logic Revisited:
Proceedings of the Conference 75 Years of First Order Logic (FOL75), pages 323–
336, Berlin, Germany. Logos.

[Thielscher, 2005a] Thielscher, M. (2005a). FLUX: A logic programming method
for reasoning agents. Theory and Practice of Logic Programming, 5(4–5):533–565.

[Thielscher, 2005b] Thielscher, M. (2005b). A FLUX agent for the Wumpus World.
In Morgenstern, L. and Pagnucco, M., editors, Proceedings of the Workshop on
Nonmonotonic Reasoning, Action and Change at IJCAI, pages 104–108, Edin-
burgh, UK.

[Thielscher, 2005c] Thielscher, M. (2005c). Handling implicational and universal
quantification constraints in flux. In Proceedings of the International Confer-
ence on Principle and Practice of Constraint Programming (CP), Sitges, Spain.
Springer.

[Thielscher, 2005d] Thielscher, M. (2005d). Reasoning Robots: The Art and Science
of Programming Robotic Agents. Kluwer.

[Thielscher, 2007] Thielscher, M. (2007). A Unifying Action Calculus. Artificial
Intelligence (submitted). http://www.fluxagent.org/publications.htm.

[Tobies, 2001] Tobies, S. (2001). Complexity Results and Practical Algorithms for
Logics in Knowledge Representation. PhD thesis, RWTH-Aachen, Germany.

[Tsarkov and Horrocks, 2003] Tsarkov, D. and Horrocks, I. (2003). DL reasoner vs.
first-order prover. In Calvanese, D., Giacomo, G. D., and Franconi, E., editors,
Proceedings of the 2003 International Workshop on Description Logics (DL 2003),
Rome, Italy. CEUR-WS.org.

[van Dalen, 1994] van Dalen, D. (1994). Logic and Structure. Universitext. Springer-
Verlag, Berlin, 3rd, augmented edition. (1st ed., 1980; 2nd ed., 1983).

150

http://www.fluxagent.org/publications.htm

Bibliography

[van Emden and Kowalski, 1976] van Emden, M. H. and Kowalski, R. A. (1976).
The semantics of predicate logic as a programming language. Journal of the
ACM, 23(4):733–742.

[Vassos, 2009] Vassos, S. (2009). A Reasoning Module for Long-Lived Cognitive
Agents. PhD thesis, University of Toronto, Toronto, Canada.

[Vassos and Levesque, 2008] Vassos, S. and Levesque, H. J. (2008). On the progres-
sion of situation calculus basic action theories: Resolving a 10-year-old conjecture.
In Proceedings of the Twenty-third National Conference on Artificial Intelligence
(AAAI 2008), Chicago, Illinois, USA. AAAI Press.

[Volz, 2007] Volz, R. (2007). Web ontology reasoning with logic databases. PhD
thesis, Universität Karlsruhe.

[Waldinger, 2007] Waldinger, R. J. (2007). Whatever happened to deductive ques-
tion answering? In Proceedings of the 14th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, (LPAR 07), Yerevan,
Armenia. Springer.

[Winslett, 1988] Winslett, M. (1988). Reasoning about Action Using a Possible
Models Approach. In Proceedings of the Seventh National Conference on Artificial
Intelligence (AAAI). AAAI Press.

[Winslett, 1990] Winslett, M. (1990). Updating Logical Databases. Cambridge Uni-
versity Press.

151

List of own Publications

[Drescher et al., 2009a] Drescher, C., Liu, H., Baader, F., Guhlemann, S., Peter-
sohn, U., Steinke, P., and Thielscher, M. (2009a). Putting abox updates into
action. In Proceedings of the Seventh International Symposion on Frontiers of
Combining Systems (FroCoS 2009), Trento, Italy.

[Drescher et al., 2009b] Drescher, C., Liu, H., Baader, F., Steinke, P., and
Thielscher, M. (2009b). Putting abox updates into action. In Proceedings of
the 8th IJCAI International Workshop on Nonmonotonic Reasoning, Action and
Change (NRAC-09), Pasadena, California, US.

[Drescher et al., 2009c] Drescher, C., Schiffel, S., and Thielscher, M. (2009c). A
declarative agent programming language based on action theories. In Proceed-
ings of the Seventh International Symposion on Frontiers of Combining Systems
(FroCoS 2009), Trento, Italy.

[Drescher and Thielscher, 2007a] Drescher, C. and Thielscher, M. (2007a). Inte-
grating action calculi and description logics. In Proceedings of the 30th Annual
German Conference on Artificial Intelligence (KI 2007), Osnabrück, Germany.

[Drescher and Thielscher, 2007b] Drescher, C. and Thielscher, M. (2007b). Reason-
ing about actions with description logics. In Proceedings of the 7th IJCAI Interna-
tional Workshop on Nonmonotonic Reasoning, Action and Change (NRAC-07),
Hyderabad, India.

[Drescher and Thielscher, 2008] Drescher, C. and Thielscher, M. (2008). A fluent
calculus semantics for ADL with plan constraints. In Proceedings of the 11th Eu-
ropean Conference on Logics in Artificial Intelligence” JELIA08, Dresden, Ger-
many. Springer.

152

	Introduction
	Logical Action Calculi
	Event, Fluent, and Situation Calculus
	Planning Languages

	Action Programming Languages
	Golog
	Event Calculus-based Language
	Flux
	Action Logic Programs

	Logic-based Knowledge Representation
	First Order Logic
	Second Order Logic
	Intuitionistic Logic
	Sub-structural Logic
	Non-monotonic Logic
	Modal Logic
	The Choice for First Order Logic

	Structure of the Thesis

	Preliminaries
	First Order Logic and Notation
	Logic Programming
	Definite Logic Programs
	Constraint Logic Programming

	Unifying Action Calculus
	Formal Basics
	Domain Axiomatizations
	Concrete Action Calculi in UAC
	Modularity of Domain Axiomatizations
	Reasoning with Action Theories

	Description Logics
	Basic Description Logics
	ABox Update

	Action Logic Programs
	Syntax of Action Logic Programs
	Semantics of Action Logic Programs
	Proof Theory
	Elementary Case --- LP(D)
	General Case --- CLP(D)
	Refinements and Extensions of the Proof Calculi

	Computed Answers and Inferred Plans
	Planning Completeness
	Properties of Background Theories
	Strong Planning Completeness
	ALPs for Conditional Planning
	Conditional versus Conformant Planning

	Planning with Sensing
	Sensing Actions in the UAC
	Discussion of the Approach
	ALPs for Planning in the Presence of Sensing Actions

	Offline vs. Online Execution

	ALPprolog
	ALPprolog Programs
	Propositional Fluent Calculus
	Propositional Fluent Calculus with Sensing
	Action Theory Representation
	Reasoning for ALPprolog
	The Update Problem
	The Entailment Problem
	The Sensing Problem

	Soundness of ALPprolog
	Evaluation
	Example I --- The Mailbot Domain
	Example II --- The Wumpus World
	Extension to Offline Planning
	Application in General Game Playing
	Availability of ALPprolog

	DL-based Action Logic Programs
	ABox Update in the Unifying Action Calculus
	Correspondence between FO and State Formulas
	ABox Update Action Domains
	UAC Semantics for ABox Update
	Modularity of ABox Update Action Domains

	Implementing ALPs atop ABox Update
	Query Answering for Action Domains DDL
	Implementing ABox Update
	Evaluation of ABox Update Implementation
	Reasoning with Updated ABoxes
	Evaluation of Reasoning with Updated ABoxes

	Perspectives

	Relation to Existing Work
	Golog
	The Relation between ALPs and Basic Golog
	Expressing Golog Programs as ALPs
	Advanced Golog Features and ALPs
	Golog Interpreter

	Flux
	Semantics of Flux
	Flux as Action Domain Reasoner for ALPs
	Advanced Features of Flux

	Domain-independent Planners
	Future Action Domain Reasoners
	Progression in Situation Calculus
	Proper Knowledge Bases and Situation Calculus

	Conclusion
	Summary
	Directions for Future Work

	Bibliography
	List of own Publications

