3 research outputs found

    CIRCUITS AND ARCHITECTURE FOR BIO-INSPIRED AI ACCELERATORS

    Get PDF
    Technological advances in microelectronics envisioned through Moore’s law have led to powerful processors that can handle complex and computationally intensive tasks. Nonetheless, these advancements through technology scaling have come at an unfavorable cost of significantly larger power consumption, which has posed challenges for data processing centers and computers at scale. Moreover, with the emergence of mobile computing platforms constrained by power and bandwidth for distributed computing, the necessity for more energy-efficient scalable local processing has become more significant. Unconventional Compute-in-Memory architectures such as the analog winner-takes-all associative-memory and the Charge-Injection Device processor have been proposed as alternatives. Unconventional charge-based computation has been employed for neural network accelerators in the past, where impressive energy efficiency per operation has been attained in 1-bit vector-vector multiplications, and in recent work, multi-bit vector-vector multiplications. In the latter, computation was carried out by counting quanta of charge at the thermal noise limit, using packets of about 1000 electrons. These systems are neither analog nor digital in the traditional sense but employ mixed-signal circuits to count the packets of charge and hence we call them Quasi-Digital. By amortizing the energy costs of the mixed-signal encoding/decoding over compute-vectors with many elements, high energy efficiencies can be achieved. In this dissertation, I present a design framework for AI accelerators using scalable compute-in-memory architectures. On the device level, two primitive elements are designed and characterized as target computational technologies: (i) a multilevel non-volatile cell and (ii) a pseudo Dynamic Random-Access Memory (pseudo-DRAM) bit-cell. At the level of circuit description, compute-in-memory crossbars and mixed-signal circuits were designed, allowing seamless connectivity to digital controllers. At the level of data representation, both binary and stochastic-unary coding are used to compute Vector-Vector Multiplications (VMMs) at the array level. Finally, on the architectural level, two AI accelerator for data-center processing and edge computing are discussed. Both designs are scalable multi-core Systems-on-Chip (SoCs), where vector-processor arrays are tiled on a 2-layer Network-on-Chip (NoC), enabling neighbor communication and flexible compute vs. memory trade-off. General purpose Arm/RISCV co-processors provide adequate bootstrapping and system-housekeeping and a high-speed interface fabric facilitates Input/Output to main memory

    Spiking CMOS-NVM mixed-signal neuromorphic ConvNet with circuit- and training-optimized temporal subsampling

    Get PDF
    We increasingly rely on deep learning algorithms to process colossal amount of unstructured visual data. Commonly, these deep learning algorithms are deployed as software models on digital hardware, predominantly in data centers. Intrinsic high energy consumption of Cloud-based deployment of deep neural networks (DNNs) inspired researchers to look for alternatives, resulting in a high interest in Spiking Neural Networks (SNNs) and dedicated mixed-signal neuromorphic hardware. As a result, there is an emerging challenge to transfer DNN architecture functionality to energy-efficient spiking non-volatile memory (NVM)-based hardware with minimal loss in the accuracy of visual data processing. Convolutional Neural Network (CNN) is the staple choice of DNN for visual data processing. However, the lack of analog-friendly spiking implementations and alternatives for some core CNN functions, such as MaxPool, hinders the conversion of CNNs into the spike domain, thus hampering neuromorphic hardware development. To address this gap, in this work, we propose MaxPool with temporal multiplexing for Spiking CNNs (SCNNs), which is amenable for implementation in mixed-signal circuits. In this work, we leverage the temporal dynamics of internal membrane potential of Integrate & Fire neurons to enable MaxPool decision-making in the spiking domain. The proposed MaxPool models are implemented and tested within the SCNN architecture using a modified version of the aihwkit framework, a PyTorch-based toolkit for modeling and simulating hardware-based neural networks. The proposed spiking MaxPool scheme can decide even before the complete spatiotemporal input is applied, thus selectively trading off latency with accuracy. It is observed that by allocating just 10% of the spatiotemporal input window for a pooling decision, the proposed spiking MaxPool achieves up to 61.74% accuracy with a 2-bit weight resolution in the CIFAR10 dataset classification task after training with back propagation, with only about 1% performance drop compared to 62.78% accuracy of the 100% spatiotemporal window case with the 2-bit weight resolution to reflect foundry-integrated ReRAM limitations. In addition, we propose the realization of one of the proposed spiking MaxPool techniques in an NVM crossbar array along with periphery circuits designed in a 130nm CMOS technology. The energy-efficiency estimation results show competitive performance compared to recent neuromorphic chip designs

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces
    corecore