4,500 research outputs found

    Repression of CIITA by the Epstein-Barr virus transcription factor Zta is independent of its dimerization and DNA binding

    Get PDF
    Repression of the cellular CIITA gene is part of the immune evasion strategy of the γherpes virus Epstein-Barr virus (EBV) during its lytic replication cycle in B-cells. In part this is mediated through down regulation of MHC class II gene expression via the targeted repression of CIITA, the cellular master regulator of MHC class II gene expression. The repression is achieved through a reduction in CIITA promoter activity initiated by the EBV transcription and replication factor Zta (BZLF1, EB1, ZEBRA). Zta is the earliest gene expressed during the lytic replication cycle. Zta interacts with sequence specific elements in promoters, enhancers and the replication origin (ZREs) and also modulates gene expression through interaction with cellular transcription factors and co-activators. Here we explore the requirements for Zta-mediated repression of the CIITA promoter. We find that repression by Zta is specific for the CIITA promoter and can be achieved in the absence of other EBV genes. Surprisingly, we find that the dimerization region of Zta is not required to mediate repression. This contrasts with an obligate requirement of this region to correctly orientate the DNA contact regions of Zta to mediate activation of gene expression through ZREs. Additional support for the model that Zta represses the CIITA promoter without direct DNA binding comes from promoter mapping that shows that repression does not require the presence of a ZRE in the CIITA promoter

    Expression of MHC II genes

    Full text link
    Innate and adaptive immunity are connected via antigen processing and presentation (APP), which results in the presentation of antigenic peptides to T cells in the complex with the major histocompatibility (MHC) determinants. MHC class II (MHC II) determinants present antigens to CD4+ T cells, which are the main regulators of the immune response. Their genes are transcribed from compact promoters that form first the MHC II enhanceosome, which contains DNA-bound activators and then the MHC II transcriptosome with the addition of the class II transactivator (CIITA). CIITA is the master regulator of MHC II transcription. It is expressed constitutively in dendritic cells (DC) and mature B cells and is inducible in most other cell types. Three isoforms of CIITA exist, depending on cell type and inducing signals. CIITA is regulated at the levels of transcription and post-translational modifications, which are still not very clear. Inappropriate immune responses are found in several diseases, including cancer and autoimmunity. Since CIITA regulates the expression of MHC II genes, it is involved directly in the regulation of the immune response. The knowledge of CIITA will facilitate the manipulation of the immune response and might contribute to the treatment of these diseases

    Understanding diversity of human innate immunity receptors: analysis of surface features of leucine-rich repeat domains in NLRs and TLRs.

    Get PDF
    BackgroundThe human innate immune system uses a system of extracellular Toll-like receptors (TLRs) and intracellular Nod-like receptors (NLRs) to match the appropriate level of immune response to the level of threat from the current environment. Almost all NLRs and TLRs have a domain consisting of multiple leucine-rich repeats (LRRs), which is believed to be involved in ligand binding. LRRs, found also in thousands of other proteins, form a well-defined "horseshoe"-shaped structural scaffold that can be used for a variety of functions, from binding specific ligands to performing a general structural role. The specific functional roles of LRR domains in NLRs and TLRs are thus defined by their detailed surface features. While experimental crystal structures of four human TLRs have been solved, no structure data are available for NLRs.ResultsWe report a quantitative, comparative analysis of the surface features of LRR domains in human NLRs and TLRs, using predicted three-dimensional structures for NLRs. Specifically, we calculated amino acid hydrophobicity, charge, and glycosylation distributions within LRR domain surfaces and assessed their similarity by clustering. Despite differences in structural and genomic organization, comparison of LRR surface features in NLRs and TLRs allowed us to hypothesize about their possible functional similarities. We find agreement between predicted surface similarities and similar functional roles in NLRs and TLRs with known agonists, and suggest possible binding partners for uncharacterized NLRs.ConclusionDespite its low resolution, our approach permits comparison of molecular surface features in the absence of crystal structure data. Our results illustrate diversity of surface features of innate immunity receptors and provide hints for function of NLRs whose specific role in innate immunity is yet unknown

    Mice lacking the MHC class II transactivator (CIITA) show tissue-specific impairment of MHC class II expression

    Get PDF
    CIITA activates the expression of multiple genes involved in antigen presentation and it is believed to be required for both constitutive and IFN\xce\xb3-inducible expression of these genes. To understand the role of CIITA in vivo, we have used gene targeting to generate mice that lack CIITA. CIITA-deficient (-/-) mice do not express conventional MHC class II molecules on the surface of splenic B cells and dendritic cells. In addition, macrophages resident in the peritoneal cavity do not express MHC class II molecules upon IFN\xce\xb3 stimulation nor do somatic tissues of mice injected with IFN\xce\xb3, in contrast with wild-type mice. The levels of li and H-2M gene transcripts are substantially decreased but not absent in CIITA (-/-) mice. The transcription of nonconventional MHC class II genes is, however, not affected by CIITA deficiency. A subset of thymic epithelial cells express MHC class II molecules. Nonetheless, very few mature CD4 T cells are present in the periphery of CIITA (-/-) mice despite MHC class II expression in the thymus. Consequently, CIITA (-/-) mice are impaired in T-dependent antigen responses and MHC class II-mediated allogeneic reponses

    Dynamic Regulation of the Class II Transactivator by Posttranslational Modifications

    Get PDF
    The class II Transactivator (CIITA) is the master regulator for Major Histocompatibility Class II (MHC II) molecules. CIITA is dynamically regulated by a series of Posttranslational Modifications (PTMs). CIITA is responsible for initiating transcription of MHC II genes, thus allowing peptides derived from extracellular antigens to be presented to CD4+ T cells. CIITA’s PTMs are necessary for regulation of CIITA’s location, activity, and stability. Our work identifies the kinase complex ERK1/2 as being responsible for phosphorylating the previously identified regulatory site, serine (S) 280 on CIITA. Phosphorylation by ERK1/2 of CIITA S280 leads to increased levels of CIITA mono-ubiquitination and overall increases in MHC II activity. We further identify a novel ubiquitin modification on CIITA, lysine (K) 63 linked ubiquitination poly ubiquitination. Our data shows novel crosstalk between K63 ubiquitination and ERK1/2 phosphorylation. K63 ubiquitinated CIITA is concentrated to the cytoplasm, and upon phosphorylation by ERK1/2, CIITA translocates to the nucleus, thus demonstrating that CIITA’s location and activity is regulated through PTM crosstalk. While ubiquitination has been shown to be a critical PTM in the regulation of CIITA, the enzyme(s) mediating this important modification remained to be elucidated. Previous reports implicating the histone acetyltransferase (HAT), pCAF as an ubiquitin E3 ligase were intriguing, as pCAF is also known to participate in the acetylation of both histones at the MHC II promoter and in acetylation of CIITA. We now identify novel roles for pCAF in the regulation of CIITA. We show pCAF acts as an E3 ligase, mediating mono, K63, and K48 linked ubiquitination of CIITA. We therefore demonstrate an additional substrate for the “dual acting” enzyme, pCAF. In sum, our observations identify enzymes involved in both the phosphorylation and ubiquitination of key residues of CIITA, which ultimately regulate CIITA activity. Together our observations contribute to knowledge of CIITA’s growing network of PTMs and their role in regulating the adaptive immune response, and will allow for development of novel therapies to target dysregulated CIITA activity during adaptive immune responses

    Roles of the Ubiquitin-Proteasome System and Mono-ubiquitination in Regulating MHC class II Transcription

    Get PDF
    Major Histocompatibility Complex (MHC) class II molecules are indispensable arms of the im-mune system that present extracellular antigens to CD4+T cells and initiate the adaptive immune response. MHC class II expression requires recruitment of a master regulator, the class II trans-activator (CIITA). How this master transcriptional regulator is recruited, stabilized and degraded is unknown. The 26S proteasome, a master regulator of protein degradation, is a multi-subunit complex composed of a 20S core particle capped on one or both ends by 19S regulatory particles. Previous findings have linked CIITA and MHC class II transcription to the ubiquitin proteasome system (UPS) as mono-ubiquitination of CIITA increases its transactivity whereas poly-ubiquitination targets CIITA for degradation. Increasing evidence indicates individual ATPase subunits of the 19S regulator play non-proteolytic roles in transcriptional regulation and histone modification. Our initial observations indicate proteasome inhibition decreases CIITA transac-tivity and MHC class II expression without affecting CIITA expression levels. Following cyto-kine stimulation, the 19S ATPase Sug1 associates with CIITA and with the MHC class II enhan-ceosome complex. Absence of Sug1 reduces promoter recruitment of CIITA and proteasome inhibition fails to restore CIITA binding, indicating Sug1 is required for CIITA mediated MHC class II expression. Furthermore, we identify a novel N-terminal 19S ATPase binding domain (ABD) within CIITA. The ABD of CIITA lies within the Proline/Serine/Threonine (P/S/T) re-gion of CIITA and encompasses a majority of the CIITA degron sequence. Absence of the ABD increases CIITA half-life, but blocks MHC class II surface expression, indicating that CIITA requires interaction with the 19S ATPases for both its deployment and destruction. Finally, we identify three degron proximal lysine residues, lysines (K): K315, K330 and K333, and a phosphorylation site, serine (S), S280, located within the CIITA degron, that regulate CIITA ubiquitination, stability and MHC class II expression. These are the first lysine residues identified as sites of CIITA ubiquitination that are essential for MHC class II expression. These observations increase our understanding of the role of the UPS in modulating CIITA mediated MHC class II transcription and will facilitate the development of novel therapies involving manipulation of MHC class II gene expression

    Induction of MHC Class I Expression by the MHC Class II Transactivator CIITA

    Get PDF
    Major histocompatibility complex (MHC) class I–deficient cell lines were used to demonstrate that the MHC class II transactivator (CIITA) can induce surface expression of MHC class I molecules. CIITA induces the promoter of MHC class I heavy chain genes. The site α DNA element is the target for CIITA-induced transactivation of class I. In addition, interferon-γ (IFNγ)–induced MHC class I expression also requires an intact site α. The G3A cell line, which is defective in CIITA induction, does not induce MHC class I antigen and promoter in response to IFNγ. Trans-dominant–negative forms of CIITA reduce class I MHC promoter function and surface antigen expression. Collectively, these data argue that CIITA has a role in class I MHC gene induction

    Overexpression of CIITA in T Cells Aggravates Th2-Mediated Colitis in Mice

    Get PDF
    The MHC class II transactivator (CIITA) is the master transcriptional regulator of genes involved in MHC class II restricted antigen presentation. Previously we suggested another role of CIITA in Th1/Th2 balance by demonstrating that forced expression of CIITA in murine T cells repressed Th1 immunity both in vitro and in vivo. However, the results were contradictory to the report that CIITA functioned to suppress the production of Th2 cytokine by CD4+ T cells in CIITA deficient mice. In this study, we investigated the influence of constitutive expression of CIITA in T cells on Th2 immune response in vivo using murine experimental colitis model. In the dextran sodium sulfate-induced acute colitis, a disease involving innate immunity, CIITA transgenic mice and wild type control mice showed similar progression of the disease. However, the development of oxazolone-induced colitis, a colitis mediated by predominantly Th2 immune response, was aggravated in CIITA-transgenic mice. And, CD4+ T cells from the mesenteric lymph node of CIITA-transgenic mice treated with oxazolone exhibited a high level of IL-4 secretion. Together, these data demonstrate that constitutive expression of CIITA in T cells skews immune response to Th2, resulting in aggravation of Th2-mediated colitis in vivo

    Molecular and cellular correlates of the CIITA-mediated inhibition of HTLV-2 Tax-2 transactivator function resulting in loss of viral replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MHC class II transactivator CIITA inhibits the function of HTLV-2 Tax-2 viral transactivator and, consequently, the replication of the virus in infected cells. Moreover overexpression of the nuclear factor NF-YB, that cooperates with CIITA for the expression of MHC class II genes, results also in inhibition of Tax-2 transactivation. The purpose of this investigation was to assess the cellular and molecular basis of the CIITA-mediated inhibition on Tax-2, and the relative role of NF-YB in this phenomenon.</p> <p>Methods</p> <p>By co-immunoprecipitation of lysates from 293T cells cotransfected with CIITA or fragments of it, and Tax-2 it was assessed whether the two factors interact <it>in vivo</it>. A similar approach was used to assess Tax-2-NF-YB interaction. In parallel, deletion fragments of CIITA were tested for the inhibition of Tax-2-dependent HTLV-2 LTR-luciferase transactivation. Subcellular localization of CIITA and Tax-2 was investigated by immunofluorescence and confocal microscopy.</p> <p>Results</p> <p>CIITA and Tax-2 interact <it>in vivo </it>through at least two independent regions, at the 1-252 N-term and at the 410-1130 C-term, respectively. Interestingly only the 1-252 N-term region mediates Tax-2 functional inhibition. CIITA and Tax-2 are localized both in the cytoplasm and in the nucleus, when separately expressed. Instead, when coexpressed, most of Tax-2 colocalize with CIITA in cytoplasm and around the nuclear membrane. The Tax-2 minor remaining nuclear portion also co-localizes with CIITA. Interestingly, when CIITA nucleus-cytoplasm shuttling is blocked by leptomycin B treatment, most of the Tax-2 molecules are also blocked and co-localize with CIITA in the nucleus, suggesting that CIITA-Tax-2 binding does not preclude Tax-2 entry into the nucleus.</p> <p>Finally, the nuclear factor NF-YB, also strongly binds to Tax-2. Notably, although endogenous NF-YB does not inhibit Tax-2-dependent HTLV-2 LTR transactivation, it still binds to Tax-2, and in presence of CIITA, this binding seems to increase.</p> <p>Conclusions</p> <p>These results strongly suggest that CIITA inhibit Tax-2 by binding the viral transactivator both directly or through a tripartite interaction with NF-YB in. CIITA is therefore a viral restriction factor for HTLV-2 and this open the possibility to control HTLV-2 viral replication and spreading by the controlled induction of CIITA in infected cells</p
    corecore