4 research outputs found

    Bisimulations respecting duration and causality for the non-interleaving applied pi-calculus

    Get PDF
    This paper shows how we can make use of an asynchronous transition system, whose transitions are labelled with events and which is equipped with a notion of independence of events, to define non-interleaving semantics for the applied π-calculus. The most important notions we define are: Start-Termination or ST-bisimilarity, preserving duration of events; and History-Preserving or HP- bisimilarity, preserving causality. We point out that corresponding similarity preorders expose clearly distinctions between these semantics. We draw particular attention to the distinguishing power of HP failure similarity, and discuss how it affects the attacker threat model against which we verify security and privacy properties. We also compare existing notions of located bisimilarity to the definitions we introduce

    A stable non-interleaving early operational semantics for the pi-calculus

    Get PDF
    We give the first non-interleaving early operational semantics for the pi-calculus which generalises the standard interleaving semantics and unfolds to the stable model of prime event structures. Our starting point is the non-interleaving semantics given for CCS by Mukund and Nielsen, where the so-called structural (prefixing or subject) causality and events are defined from a notion of locations derived from the syntactic structure of the process terms. We conservatively extend this semantics with a notion of extruder histories, from which we infer the so-called link (name or object) causality and events introduced by the dynamic communication topology of the pi-calculus. We prove that the semantics generalises both the standard interleaving early semantics for the pi-calculus and the non-interleaving semantics for CCS. In particular, it gives rise to a labelled asynchronous transition system unfolding to prime event structures

    Nested-unit Petri nets

    Get PDF
    International audiencePetri nets can express concurrency and nondeterminism but neither locality nor hierarchy. This article presents an extension of Petri nets, in which places can be grouped into so-called "units" expressing sequential components. Units can be recursively nested to reflect both the concurrent and hierarchical nature of complex systems. This model called NUPN (Nested-Unit Petri Nets) was originally developed for translating process calculi to Petri nets, but later found also useful beyond this setting. It allows significant savings in the memory representation of markings for both explicit-state and symbolic verification. Thirteen software tools already implement the NUPN model, which has also been adopted for the benchmarks of the Model Checking Contest (MCC) and the parallel problems of the Rigorous Examination of Reactive Systems (RERS) challenges

    Independence, name-passing and constraints in models for concurrency

    Get PDF
    corecore