1,234 research outputs found

    QuickCSG: Fast Arbitrary Boolean Combinations of N Solids

    Get PDF
    QuickCSG computes the result for general N-polyhedron boolean expressions without an intermediate tree of solids. We propose a vertex-centric view of the problem, which simplifies the identification of final geometric contributions, and facilitates its spatial decomposition. The problem is then cast in a single KD-tree exploration, geared toward the result by early pruning of any region of space not contributing to the final surface. We assume strong regularity properties on the input meshes and that they are in general position. This simplifying assumption, in combination with our vertex-centric approach, improves the speed of the approach. Complemented with a task-stealing parallelization, the algorithm achieves breakthrough performance, one to two orders of magnitude speedups with respect to state-of-the-art CPU algorithms, on boolean operations over two to dozens of polyhedra. The algorithm also outperforms GPU implementations with approximate discretizations, while producing an output without redundant facets. Despite the restrictive assumptions on the input, we show the usefulness of QuickCSG for applications with large CSG problems and strong temporal constraints, e.g. modeling for 3D printers, reconstruction from visual hulls and collision detection

    QuickCSG: Fast Arbitrary Boolean Combinations of N Solids

    Full text link
    QuickCSG computes the result for general N-polyhedron boolean expressions without an intermediate tree of solids. We propose a vertex-centric view of the problem, which simplifies the identification of final geometric contributions, and facilitates its spatial decomposition. The problem is then cast in a single KD-tree exploration, geared toward the result by early pruning of any region of space not contributing to the final surface. We assume strong regularity properties on the input meshes and that they are in general position. This simplifying assumption, in combination with our vertex-centric approach, improves the speed of the approach. Complemented with a task-stealing parallelization, the algorithm achieves breakthrough performance, one to two orders of magnitude speedups with respect to state-of-the-art CPU algorithms, on boolean operations over two to dozens of polyhedra. The algorithm also outperforms GPU implementations with approximate discretizations, while producing an output without redundant facets. Despite the restrictive assumptions on the input, we show the usefulness of QuickCSG for applications with large CSG problems and strong temporal constraints, e.g. modeling for 3D printers, reconstruction from visual hulls and collision detection

    QuickCSG: Arbitrary and Faster Boolean Combinations of N Solids

    No full text
    While studied over several decades, the computation of boolean operations on polyhedra is almost always addressed by focusing on the case of two polyhedra. For multiple input polyhedra and an arbitrary boolean operation to be applied, the operation is decomposed over a binary CSG tree, each node being processed separately in quasilinear time. For large trees, this is both error prone due to intermediate geometry and error accumulation, and inefficient because each node yields a specific overhead. We introduce a fundamentally new approach to polyhedral CSG evaluation, addressing the general N-polyhedron case. We propose a new vertex-centric view of the problem, which both simplifies the algorithm computing resulting geometric contributions, and vastly facilitates its spatial decomposition. We then embed the entire problem in a single KD-tree, specifically geared toward the final result by early pruning of any region of space not contributing to the final surface. This not only improves the robustness of the approach, it also gives it a fundamental speed advantage, with an output complexity depending on the output mesh size instead of the input size as with usual approaches. Complemented with a task-stealing parallelization, the algorithm achieves breakthrough performance, one to two orders of magnitude speedups with respect to state-of-the-art CPU algorithms, on boolean operations over two to several dozen polyhedra. The algorithm is also shown to outperform recent GPU implementations and approximate discretizations, while producing an exact output without redundant facets.Quoique étudié depuis des décennies, le calcul d'opérations booléennes sur des polyèdres est quasiment toujours fait sur deux opérandes. Pour un plus grand nombre de polyèdres et une opération booléenne arbitraire à effectuer, l'opération est décomposée sur un arbre binaire CSG (géométrie constructive), dans lequel chaque nœud est traité séparément en temps quasi-linéaire. Pour de grands arbres, ceci est à la fois source d'erreurs, à cause des calculs géométriques intermédiaires, et inefficace à cause des traitements superflus au niveau des nœuds. Nous introduisons une approche fondamentalement nouvelle qui traite le cas général de N polyèdres. Nous proposons une vue du problème centrée sur les sommets, ce qui simplifie l'algorithme et facilite sa décomposition spatiale. Nous traitons le problème dans un seul KD-tree, qui est dirigé vers le résultat final, en élaguant les régions de l'espace qui ne contribuent pas à la surface finale. Non seulement ceci améliore la robustesse de l'approche mais ça lui donne un avantage en vitesse, car la complexité dépend plus de la taille de la sortie que celle d'entrée. En la combinant avec une parallélisation basée sur du vol de tâche, l'algorithme a des performances inouïes, d'un ou deux ordres de grandeur plus rapide que les algorithmes de l'état de l'art sur CPU et GPU. De plus il produit un résultat exact, sans aucune primitive géométrique superflue

    QuickCSG: Arbitrary and Faster Boolean Combinations of N Solids

    Get PDF
    While studied over several decades, the computation of boolean operations on polyhedra is almost always addressed by focusing on the case of two polyhedra. For multiple input polyhedra and an arbitrary boolean operation to be applied, the operation is decomposed over a binary CSG tree, each node being processed separately in quasilinear time. For large trees, this is both error prone due to intermediate geometry and error accumulation, and inefficient because each node yields a specific overhead. We introduce a fundamentally new approach to polyhedral CSG evaluation, addressing the general N-polyhedron case. We propose a new vertex-centric view of the problem, which both simplifies the algorithm computing resulting geometric contributions, and vastly facilitates its spatial decomposition. We then embed the entire problem in a single KD-tree, specifically geared toward the final result by early pruning of any region of space not contributing to the final surface. This not only improves the robustness of the approach, it also gives it a fundamental speed advantage, with an output complexity depending on the output mesh size instead of the input size as with usual approaches. Complemented with a task-stealing parallelization, the algorithm achieves breakthrough performance, one to two orders of magnitude speedups with respect to state-of-the-art CPU algorithms, on boolean operations over two to several dozen polyhedra. The algorithm is also shown to outperform recent GPU implementations and approximate discretizations, while producing an exact output without redundant facets.Quoique étudié depuis des décennies, le calcul d'opérations booléennes sur des polyèdres est quasiment toujours fait sur deux opérandes. Pour un plus grand nombre de polyèdres et une opération booléenne arbitraire à effectuer, l'opération est décomposée sur un arbre binaire CSG (géométrie constructive), dans lequel chaque nœud est traité séparément en temps quasi-linéaire. Pour de grands arbres, ceci est à la fois source d'erreurs, à cause des calculs géométriques intermédiaires, et inefficace à cause des traitements superflus au niveau des nœuds. Nous introduisons une approche fondamentalement nouvelle qui traite le cas général de N polyèdres. Nous proposons une vue du problème centrée sur les sommets, ce qui simplifie l'algorithme et facilite sa décomposition spatiale. Nous traitons le problème dans un seul KD-tree, qui est dirigé vers le résultat final, en élaguant les régions de l'espace qui ne contribuent pas à la surface finale. Non seulement ceci améliore la robustesse de l'approche mais ça lui donne un avantage en vitesse, car la complexité dépend plus de la taille de la sortie que celle d'entrée. En la combinant avec une parallélisation basée sur du vol de tâche, l'algorithme a des performances inouïes, d'un ou deux ordres de grandeur plus rapide que les algorithmes de l'état de l'art sur CPU et GPU. De plus il produit un résultat exact, sans aucune primitive géométrique superflue

    Lower bounds on the redundancy in computations from random oracles via betting strategies with restricted wagers

    Get PDF
    The Kučera–Gács theorem is a landmark result in algorithmic randomness asserting that every real is computable from a Martin-Löf random real. If the computation of the first n bits of a sequence requires n+h(n) bits of the random oracle, then h is the redundancy of the computation. Kučera implicitly achieved redundancy nlog⁡n while Gács used a more elaborate coding procedure which achieves redundancy View the MathML source. A similar bound is implicit in the later proof by Merkle and Mihailović. In this paper we obtain optimal strict lower bounds on the redundancy in computations from Martin-Löf random oracles. We show that any nondecreasing computable function g such that ∑n2−g(n)=∞ is not a general upper bound on the redundancy in computations from Martin-Löf random oracles. In fact, there exists a real X such that the redundancy g of any computation of X from a Martin-Löf random oracle satisfies ∑n2−g(n)<∞. Moreover, the class of such reals is comeager and includes a View the MathML source real as well as all weakly 2-generic reals. On the other hand, it has been recently shown that any real is computable from a Martin-Löf random oracle with redundancy g, provided that g is a computable nondecreasing function such that ∑n2−g(n)<∞. Hence our lower bound is optimal, and excludes many slow growing functions such as log⁡n from bounding the redundancy in computations from random oracles for a large class of reals. Our results are obtained as an application of a theory of effective betting strategies with restricted wagers which we develop

    Coherent multi-dimensional segmentation of multiview images using a variational framework and applications to image based rendering

    No full text
    Image Based Rendering (IBR) and in particular light field rendering has attracted a lot of attention for interpolating new viewpoints from a set of multiview images. New images of a scene are interpolated directly from nearby available ones, thus enabling a photorealistic rendering. Sampling theory for light fields has shown that exact geometric information in the scene is often unnecessary for rendering new views. Indeed, the band of the function is approximately limited and new views can be rendered using classical interpolation methods. However, IBR using undersampled light fields suffers from aliasing effects and is difficult particularly when the scene has large depth variations and occlusions. In order to deal with these cases, we study two approaches: New sampling schemes have recently emerged that are able to perfectly reconstruct certain classes of parametric signals that are not bandlimited but characterized by a finite number of parameters. In this context, we derive novel sampling schemes for piecewise sinusoidal and polynomial signals. In particular, we show that a piecewise sinusoidal signal with arbitrarily high frequencies can be exactly recovered given certain conditions. These results are applied to parametric multiview data that are not bandlimited. We also focus on the problem of extracting regions (or layers) in multiview images that can be individually rendered free of aliasing. The problem is posed in a multidimensional variational framework using region competition. In extension to previous methods, layers are considered as multi-dimensional hypervolumes. Therefore the segmentation is done jointly over all the images and coherence is imposed throughout the data. However, instead of propagating active hypersurfaces, we derive a semi-parametric methodology that takes into account the constraints imposed by the camera setup and the occlusion ordering. The resulting framework is a global multi-dimensional region competition that is consistent in all the images and efficiently handles occlusions. We show the validity of the approach with captured light fields. Other special effects such as augmented reality and disocclusion of hidden objects are also demonstrated

    An efficient learning algorithm for binary neural networks

    Get PDF
    Binary Neural Networksの新しい幾何学的学習アルゴリズムを提案する。BNNは入出力がバイナリー信号のフィードフォワードニューラルネットである。幾何学的学習アルゴリズムは超平面による、分離を用いており、簡素であるが、非常に学習速度が早く、また、ハード化に適している教師あり学習アルゴリズムである。本学習アルゴリズムでは、実際には入力されない信号を仮想入力として用いる。これによって、従来は困難であった中間層が少なく、結合パラメータのばらつきが少ないネットワークが構成できる。This paper proposes a novel efficient geometrical learning algorithm for binary neural networks: a feed-forward neural network having binary inputs and outputs. Our supervised learning algorithm uses flexible and speedy linear separation method using virtual inputs. As compared with conventional algorithm, our algorithm can reduce the number of hidden layers and improve the variation of the connection parameters for complex teacher signal. The learned networks are suited for hardware implementatio

    Grid generation for the solution of partial differential equations

    Get PDF
    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given
    corecore