19 research outputs found

    DotAligner:Identification and clustering of RNA structure motifs

    Get PDF
    Abstract The diversity of processed transcripts in eukaryotic genomes poses a challenge for the classification of their biological functions. Sparse sequence conservation in non-coding sequences and the unreliable nature of RNA structure predictions further exacerbate this conundrum. Here, we describe a computational method, DotAligner, for the unsupervised discovery and classification of homologous RNA structure motifs from a set of sequences of interest. Our approach outperforms comparable algorithms at clustering known RNA structure families, both in speed and accuracy. It identifies clusters of known and novel structure motifs from ENCODE immunoprecipitation data for 44 RNA-binding proteins

    A new procedure to analyze RNA non-branching structures

    Get PDF
    RNA structure prediction and structural motifs analysis are challenging tasks in the investigation of RNA function. We propose a novel procedure to detect structural motifs shared between two RNAs (a reference and a target). In particular, we developed two core modules: (i) nbRSSP_extractor, to assign a unique structure to the reference RNA encoded by a set of non-branching structures; (ii) SSD_finder, to detect structural motifs that the target RNA shares with the reference, by means of a new score function that rewards the relative distance of the target non-branching structures compared to the reference ones. We integrated these algorithms with already existing software to reach a coherent pipeline able to perform the following two main tasks: prediction of RNA structures (integration of RNALfold and nbRSSP_extractor) and search for chains of matches (integration of Structator and SSD_finder)

    e-RNA: a collection of web servers for comparative RNA structure prediction and visualisation

    Get PDF
    e-RNA offers a free and open-access collection of five published RNA sequence analysis tools, each solving specific problems not readily addressed by other available tools. Given multiple sequence alignments, Transat detects all conserved helices, including those expected in a final structure, but also transient, alternative and pseudo-knotted helices. RNA-Decoder uses unique evolutionary models to detect conserved RNA secondary structure in alignments which may be partly protein-coding. SimulFold simultaneously co-estimates the potentially pseudo-knotted conserved structure, alignment and phylogenetic tree for a set of homologous input sequences. CoFold predicts the minimum-free energy structure for an input sequence while taking the effects of co-transcriptional folding into account, thereby greatly improving the prediction accuracy for long sequences. R-chie is a program to visualise RNA secondary structures as arc diagrams, allowing for easy comparison and analysis of conserved base-pairs and quantitative features. The web site server dispatches user jobs to a cluster, where up to 100 jobs can be processed in parallel. Upon job completion, users can retrieve their results via a bookmarked or emailed link. e-RNA is located at http://www.e-rna.org

    Data mining in computational proteomics and genomics

    Get PDF
    This dissertation addresses data mining in bioinformatics by investigating two important problems, namely peak detection and structure matching. Peak detection is useful for biological pattern discovery while structure matching finds many applications in clustering and classification. The first part of this dissertation focuses on elastic peak detection in 2D liquid chromatographic mass spectrometry (LC-MS) data used in proteomics research. These data can be modeled as a time series, in which the X-axis represents time points and the Y-axis represents intensity values. A peak occurs in a set of 2D LC-MS data when the sum of the intensity values in a sliding time window exceeds a user-determined threshold. The elastic peak detection problem is to locate all peaks across multiple window sizes of interest in the dataset. A new method, called PeakID, is proposed in this dissertation, which solves the elastic peak detection problem in 2D LC-MS data without yielding any false negative. PeakID employs a novel data structure, called a Shifted Aggregation Tree or AggTree for short, to find the different peaks in the dataset. This method works by first constructing an AggTree in a bottom-up manner from the dataset, and then searching the AggTree for the peaks in a top-down manner. PeakID uses a state-space algorithm to find the topology and structure of an efficient AggTree. Experimental results demonstrate the superiority of the proposed method over other methods on both synthetic and real-world data. The second part of this dissertation focuses on RNA pseudoknot structure matching and alignment. RNA pseudoknot structures play important roles in many genomic processes. Previous methods for comparative pseudoknot analysis mainly focus on simultaneous folding and alignment of RNA sequences. Little work has been done to align two known RNA secondary structures with pseudoknots taking into account both sequence and structure information of the two RNAs. A new method, called RKalign, is proposed in this dissertation for aligning two known RNA secondary structures with pseudoknots. RKalign adopts the partition function methodology to calculate the posterior log-odds scores of the alignments between bases or base pairs of the two RNAs with a dynamic programming algorithm. The posterior log-odds scores are then used to calculate the expected accuracy of an alignment between the RNAs. The goal is to find an optimal alignment with the maximum expected accuracy. RKalign employs a greedy algorithm to achieve this goal. The performance of RKalign is investigated and compared with existing tools for RNA structure alignment. An extension of the proposed method to multiple alignment of pseudoknot structures is also discussed. RKalign is implemented in Java and freely accessible on the Internet. As more and more pseudoknots are revealed, collected and stored in public databases, it is anticipated that a tool like RKalign will play a significant role in data comparison, annotation, analysis, and retrieval in these databases

    Classification of Noncoding RNA Families using Deep Convolutional Neural Networks

    Get PDF
    In the last decade, the discovery of noncoding RNA (ncRNA) has exploded. Classifying thesencRNA is critical to determining their function. This thesis proposes a new method employing deep convolutional neural networks (CNNs) to classify ncRNA sequences. To this end, this thesis first proposes an efficient approach to convert the RNA sequences into images characterizing their base-pairing probability. As a result, classifying RNA sequences is converted to an image classification problem that can be efficiently solved by available CNN-based classification models. This thesis also considers the folding potential of the ncRNAs in addition to their primary sequence. Based on the proposed approach, a benchmark image classification dataset is generated from the RFAM database of ncRNA sequences. In addition, three classical CNN models and three Siamese network models have been implemented and compared to demonstrate the superior performance and efficiency of the proposed approach. Extensive experimental results show the great potential of using deep learning approaches for RNA classification
    corecore