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Abstract

In the last decade, the discovery of noncoding RNA (ncRNA) has exploded. Classifying these

ncRNA is critical to determining their function. This thesis proposes a new method employing

deep convolutional neural networks (CNNs) to classify ncRNA sequences. To this end, this thesis

first proposes an efficient approach to convert the RNA sequences into images characterizing their

base-pairing probability. As a result, classifying RNA sequences is converted to an image classifi-

cation problem that can be efficiently solved by available CNN-based classification models. This

thesis also considers the folding potential of the ncRNAs in addition to their primary sequence.

Based on the proposed approach, a benchmark image classification dataset is generated from the

RFAM database of ncRNA sequences. In addition, three classical CNN models and three Siamese

network models have been implemented and compared to demonstrate the superior performance

and efficiency of the proposed approach. Extensive experimental results show the great potential

of using deep learning approaches for RNA classification.
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Chapter 1

Introduction

1.1 Background

Ribonucleic Acid (RNA) plays vastly many different roles within living cells. In 2007, with the

development of high-throughput sequencing, a large amount of new RNA were discovered Heyne

et al. (2012). Many of these RNA were found not to be involved in protein creation and are thus

called noncoding RNA (ncRNA). However, just because these RNA do not directly code for protein

does not reduce their impact in the cell Zhang et al. (2017). Noncoding RNA have been shown to

play many important roles in cell processes such as to effect high-order chromosomal dynamics,

telomere biology, subcellular structural organization, and gene expression. These processes are

central to life Hombach & Kretz (2016). Not just in animals, but in plants, fungi, and prokaryotes.

Some significant ncRNA include microRNA (miRNA), which performs posttransciptional reg-

ulation of gene expression. Micro-RNA do this by partial complimentary base pairing to specific

messenger RNA (mRNA). This process inhibits protein translation and can also facilitate degra-

dation of the target mRNA Mercer et al. (2009). Small nuclear RNA (snRNA) also play a pivotal

role in gene expression. Small nuclear RNA are involved in the pretranscriptional splicing process.

Transfer RNA, another ncRNA, decore the mRNA sequence into peptides or proteins. Ribsomal

RNA (rRNA) form the framework of ribosomes, a macromolecular structure essential for protein

translation.

Small non-coding RNA have been proven to effect many different processes in animal develop-

ment. Small ncRNA function as developmental switches by silencing unwanted messages resulting

from leaky transcription or previous synthesis. This acts as a maintenance on target mRNA expres-

1



sion, keeping them in optimal ranges Stefani & Slack (2008). Micro RNA play a role in early em-

bryonic development by modulating nodal levels in early embryos. Nodal is a transforming growth

factor protein that plays a very important role in early embryonic development. Micro RNA also

play key roles in muscle development by regulating proliferation to differentiation switching in

muscles and playing an important role in cardiac function Stefani & Slack (2008). It is also impor-

tant in lymphocyte development as with miR-181, an RNA which increases the sensitivity of DP

cells to stimulation of the T-Cell receptor, a type of white blood cell Stefani & Slack (2008).

Long non-coding RNA (lncRNA) are a subset of ncRNA which are longer than 200 nucleotides.

These RNA show very low sequence conservation Ma et al. (2013). These lncRNA are the most

functionally diverse class of RNA. They are predominantly localized in the nucleus of the cell and

specifically within chromatin, the material that forms chromosomes within the nucleus Ma et al.

(2013). The cascading transcription of lncRNA across the fructose bisphosphate promoter in yeast

is associated with the progressive opening of chromatin, increasing access to transcriptional acti-

vators Ma et al. (2013). Long ncRNA can regulate epigenetic modification and gene expression

Zhang et al. (2017). Other lncRNA have also been shown to effect post-transcriptional regulation

through splicing regulation and transitional control Ma et al. (2013). These families of RNA are

medically significant because their ability to regulate associated protein-coding genes. This regula-

tion could contribute to disease if misexpressed, thereby deregulating genes of clinical significance

Mercer et al. (2009). The classification of ncRNAs seeds to categorize ncRNA elements into fam-

ilies based on their sequence and structure to facilitate their functional annotation and prediction

Zhang et al. (2017).

1.2 Motivation

RNA are defined by three graphical representations: primary structure, secondary structure, and

tertiary structure. The primary structure is defined by their sequence. The secondary structure

is defined by the bonds formed from folding. The tertiary structure is defined by the shape the

RNA takes in the physical world. Given an RNA’s sequence, it is much simpler to determine its
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secondary structure than tertiary structure Herschlag (1995). Given this, bioinformatics focuses on

the primary and secondary structure. The molecular function of ncRNA is implemented through

both of its sequence and structure Heyne et al. (2012). Classification of ncRNAs purely using their

sequences is insufficient, as ncRNAs with conserved secondary structures may share low sequence

identity due to the presence of co-variant mutations. Many ncRNA cannot be aligned by purely

Sequence-based alignment techniques struggle when the pairwise sequence identities are less than

60%. Initial methods looked at using structure-based alignment techniques like MARNA Siebert

& Backofen (2005) and RNAforester Hochsmann et al. (2003), but these struggled because of poor

accuracy of single structure predictions Will et al. (2012). Therefore, modern methods for ncRNA

clustering use both the primary sequence and secondary structure features Smith et al. (2017).

Unfortunately, the consideration of the secondary structure increases the time complexity for

pairwise ncRNA comparison, from O(l2) with pure sequence to O(l4) with both sequence and sec-

ondary structure. The high time complexity thus makes clustering of large amount of ncRNA ele-

ments infeasible with current methods. New methods are needed to handle the continuing growth

of discovered ncRNA. The initial release of RFAM 1.0 in 2003 contained 25 unique RNA families.

In 2018, RFAM 13.0 was released, containing 2,687 families. Faster algorithms are needed to

process the exponentially growing size of bioinformatics data, especially within ncRNA.

1.3 Goals

Given a newly-discovered RNA, modern day approaches rely on biologists to manually align se-

quences with other RNA across similar-length RNA families in order to determine their RNA

family. This is a very time-consuming process. The obvious solution is to use sequence align-

ment approaches to determine RNA families. These sequence alignment techniques use dynamic

programming which have high complexity, especially on longer RNA. It also requires the RNA

in the same family to have similar sequence identities, of which many lncRNA do not. Calculat-

ing the RNA secondary structure while aligning the sequences improves classification accuracy of

lncRNA but increases the complexity of the classification from O(l2) to O(l4). The other option
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is to use structural alignment, but these methods have previously shown poor accuracy. Thus, it

is necessary to find quicker algorithms that can accurately classify RNA with just its secondary

structure, and not only determine if an RNA is within a currently known family, but can determine

if the RNA should be defined within a completely new RNA family.

1.4 Contributions

In this paper, I propose a new approach to general RNA family classification using image pro-

cessing techniques. For a given ncRNA element, the base-pairing probability matrix (BPPM) was

computed using RNAfold from the Vienna Package. I then convert the BPPM into an gray-scale

image, using the intensity of each pixel to represent the base-pairing probability of the corre-

sponding bases. I then apply three different deep CNN algorithms (VGGnet-19, ResNet-50, and

ResNet-101) to classify these images. These deep CNN algorithms are then wrapped into Siamese

networks for classification as well. I tested this approach using the RFAM database Kalvari et al.

(2017), and showed an 85% classification accuracy with the CNN model and 79% classification

accuracy with the Siamese model.

The main contributions of this thesis are:

1. I propose to convert the problem of RNA sequence classification into an image classification

problem.

2. I propose an efficient approach to convert two RNA sequences into an image and generate

an image dataset for RNA sequences from the same and different families.

3. I implement three classical deep learning-based classification models and compare their per-

formance in RNA classification. The results demonstrate the feasibility of the advantages of

the proposed approach.

4. I implement these three classical deep learning-based classification models as Siamese Net-

works to evaluate their performance with the deep CNNs as feature-extractors on ncRNA.
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A part of this thesis - McClannahan et al. (2020) has been published in the 2020 IEEE Interna-

tional Conference on Systems, Man, and Cybernetics.
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Chapter 2

Related Works

2.1 Analyzing RNA by Secondary Structure

Initial methods, like MARNA and RNAforester, utilized just the predicted or actual secondary

structure for classifying ncRNA Will et al. (2012). MARNA used pairwise-sequence alignments

to make their RNA structural predictions. These structural predictions were then used in multi-

structural alignments Siebert & Backofen (2005). RNAforester built an RNA secondary structure

alignment algorithm by representing RNA secondary structures as trees and aligning them with

tree alignment algorithms. However, these methods were found to struggle with accurate predic-

tions. There are several other, more modern methods that are used for classifying RNA by its

secondary structure. QRNA utilizes a context-free grammar constrained by structural RNA evo-

lution paired with two different hidden Markov models for determining other constraintsRivas &

Eddy (2001). RNAfold Hofacker (2003) and Mfold Zuker (2003) use secondary structure com-

parisons based on a minimum free energy model. RNAz predicts the conserved structure of RNA

based on its thermodynamic stability Washietl (2012). Sankoff-style folding algorithms have also

shown effectiveness in doing simultaneous primary and secondary structure alignments Sankoff

(1985). CARNA showed how these could be used to classify RNA by finding a predicted sec-

ondary structure during RNA alignment Sorescu et al. (2012). Several other approaches compare

multiple graph representations of RNA secondary structure such as GraphClust Heyne et al. (2012)

and Karklin et al. (2004).

The most successful methods have combined sequence alignment techniques with a partition

function, like the McCaskill Partition function Mccaskill (1990), to compare the primary and sec-
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ondary structures at the same time, such as LocaRNA-P Will et al. (2012). LocaRNA uses the

McCaskill partition function initially to generate a base-pair probability matrices for two given

RNA. These matrices are then scored based on confidence in the individual alignment columns

and the predicted consensus structure, called STARs (sequence-structure-based alignment reliabil-

ity). These STARs are calculated by dividing its Boltzmann weights by the total partition function.

STARs are then used to do multiple alignment across RNA to generate STAR profiles. These pro-

files predict the boundaries of local regions of conserved sequence and structure to find ncRNA

in alignments of longer sequences. These star profiles allow for RNA clusters to be found when

pointed at a genome Will et al. (2012).

LocaRNA was one of the first classifiers not to struggle to accurately analyze ncRNA. Another

more recent approach built with LocaRNA’s approach in mind is DotAligner, which also uses both

the primary sequence and secondary structure to discover sequence motifs, but is more focused on

lncRNAs Smith et al. (2017). DotAligner first generates a dynamic programming matrix filled by

aligning the two given sequences based on their similarity and cumulative base-pair probabilities.

Then the structural compatibility of the two RNA sequences is calculated using a partition function

over all pairwise alignments. The two most likely structural ensembles generated by the partition

function are considered. Lastly, the sequences alignments are warped towards the alignment that

includes structural features, thereby exposing the common structural features hidden by suboptimal

base-pairing ensembles.

2.2 Image Classification with Convolutional Neural Networks

Recently, researchers have applied CNNs to many different fields of applications, including image

classification Cen & Wang (2020), translation Xu et al. (2019), object detection Ma et al. (2020),

depth estimation He et al. (2018b), crowd counting Sajid et al. (2020), and medical image analysis

Patel et al. (2020). AlexNet was the first CNN to be applied towards image classification tasks.

AlexNet used a series of overlapping convolutional masks of size 11x11, 5x5, and 3x3 pixels

over the image. Convolutional layers were followed by pooling layers and ReLU activation lay-
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ers. ReLU is an important activation function in Image classification because it adds non-linearity

and also removes negative values. Pixel values can never be lower than 0 so ReLU purges any

weights that generate negative values while maintaining positive values coming out of the convo-

lution masks. AlexNet won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

2012 competition with a top-5 error rate of 15.3%, significantly outperforming other top perform-

ing methods which only achieved 26.2% top-5 error rate Krizhevsky et al. (2017). GoogleNet

followed up on AlexNet’s innovation by introducing the inception module. The inception module

employs 3× 3 and 5× 5 convolution masks followed be 1× 1 convolution masks for dimension-

ality reduction and reduce the total number of parameters required to be trained by the network.

GooglNet achieved a top-5 error rate of 6.67% at the ILSVRC 2014 classification task Szegedy

et al. (2015).

VGGnet released the same year as GoogleNet. VGGnet demonstrated a method of building

CNNs with significantly fewer parameters to be trained. By stacking 3× 3 convolutional filters,

much larger convolutional filters can be implemented more efficiently. For example, a 7×7 con-

volutional filter can be implemented by stacking three 3× 3 convolutional filters on top of each

other. For C channels in the convolutional layer, the 7× 7 convolutional filter reduces from 72C2

= 49C2 parameters to 3(32C2) = 27C2 parameters, a 45% reduction in parameters with the same

output. VGGnet achieved the first place in localization and the second in classification at ImageNet

Challenge 2014 with a top-5 error rate of 7.3% Simonyan & Zisserman (2014). ResNet introduced

residual mappings to CNNs. A residual mapping within a neural network layer approximating the

function H(x) changes the output of the layer from F(x) = H(x) to F(x) = H(x)+ x. When a

layer with a residual mapping is trained, if it fails to create an accurate approximation of F(x) the

output of the layer is still just x instead of a warped H(x) that corrupts the rest of the network. This

change allows significantly deeper networks to be trained without overfitting. The largest VGGnet

model is 19 layers and has 19.6 billion floating point operations (FLOPs). ResNet was able to

build significantly deeper models including a network with 152 layers. Since the network was able

to be much deeper due to residual mappings utilized, the network was able to be much thinner
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and the 152 layer network only had 11.3 billion FLOPs, 40% FLOPs compared to the 19-layer

VGGnet model. Using these improvements, ResNet achieved first in the ILSVRC 2015 classifi-

cation task with a top-5 error rate of 6.71% He et al. (2016). After ResNet created significantly

deeper networks, wide residual networks showed that similar results could be achieved by greatly

increasing the number of parameters in a shallow network and utilizing dropout layers Zagoruyko

& Komodakis (2016). Other approaches include DenseNet, a CNN designed to compute dense,

multi-scale feature pyramids using up and down sampling of image patches with a CNN-based

object classifier Iandola et al. (2014).

Very few studies have been performed for RNA classification using CNN based classifiers.

CNNclust Aoki & Sakakibara (2018) utilized one-dimensional CNNs for ncRNA sequence motif

discovery. Similar to DotAligner, CNNclust used both the sequence and the secondary structure to

more accurately find sequence motifs and then use those to make accurate classifications. However,

CNNclust utilized one-dimensional convolutions over the primary sequence and base-pair proba-

bility as opposed to using partition functions like LocaRNA and DotAligner. This one-dimensional

CNN took in a one-hot encoded sequence value of the alignment not the sequence, allowing for gap

values to be included in the input. Along with the sequence, a three-dimensional vector was also

input to the network defining the secondary structure at that nucleotide. This vector was a one-hot

encoded vector representing whether the current nucleotide would bond upstream, downstream,

or not at all. The network then performed sets of convolution operations over the sequence and

structure representations followed by max pooling layers and then three fully-connected layers to

classify two RNA. All classifications are then combined into an adjacency matrix and family clus-

ters are then extracted from the adjacency matrix such that each family is defined by the complete

maximal sub-graphs extracted.

2.3 Siamese Networks

Siamese neural networks (SiNN) are more complicated neural networks that try to take advantage

of other network architectures to make predictions about similarity. A Siamese network has two
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branches with each branch sharing the exact same architecture and weights. The network receives

two inputs and feeds each input through one of the branches, but the exact order of the input is

irrelevant to the final output of the SiNN. Each output from the branch networks are then passed

through a comparison layer that evaluates the output of each for similarity. This similarity is then

passed to a top network which makes the final classification. Siamese Neural Networks make use

of this twin branch network structure to realize a non-linear embedding from its input domain to

some euclidean domain Roy et al. (2019). Effectively the branch network operates as a descriptor

computation module and the top network as a input similarity function Zagoruyko & Komodakis

(2015). These properties of feature extraction and similarity comparisons make Siamese Networks

great at classifying similarity between inputs.

In Melekhov et al. (2016), Siamese networks have demonstrated measured improvements over

CNNs in image matching. Siamese networks built on top of CNNs have demonstrated the ability to

match landmarks more accurately than using a standard CNN, even when the landmarks have not

been seen before and the training set contained mislabeled data Melekhov et al. (2016). Siamese

Networks have also been shown to be superior to CNNs in general image matching Zagoruyko &

Komodakis (2015). Building off of their improved image matching capabilities, Researchers have

also applied Siamese networks to object tracking. It has been demonstrated that Siamese networks

use available data more efficiently and perform more efficient spatial searches compared to more

generic CNN methods Bertinetto et al. (2016). Other approaches have also utilized Siamese net-

works in person tracking He et al. (2018a). They have increased performance in identifying people

across multiple images by identifying features of tracked people and matching them to people

in subsequent photos. In fact, Siamese Networks using CNNs were able to show state-of-the-art

performance in generic image matching with only a single initial observation Tao et al. (2016).

Siamese networks have shown capabilities outside of image comparisons. In Koch et al. (2015),

Siamese networks were applied to one-shot image classification and demonstrated the capability to

do one-shot classification for verification. These capabilities extend to other domains too, specifi-

cally image classification Koch et al. (2015). Within bioinformatics, Siamese networks have seen
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use with chromosomal classification to improve performance compared to deep learning models

Jindal et al. (2017).
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Chapter 3

Methodology

3.1 Dataset

Figure 3.1: Top: an example of interior loop of an RNA sequence. Bottom: Corresponding dot-plot
matrix of the sequence.

3.1.1 CNN Dataset

The dot-plot matrix is generated by letting any cell (i, j) represent the probability that a bond exists

between the ith and jth nucleic acid in the RNA secondary structure (excluding bonds amongst

neighboring nucleic acids). Generating a dot-plot matrix from the secondary structure defined by

the BPPM gives a matrix that is symmetric along the diagonal, as shown in Fig. 3.2. The dot-plot

matrix is then converted into an image by treating each cell as a pixel where the probability of a

bond forming is treated as an intensity between 0 and 1, as illustrated in Fig. 3.1. This process
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creates a grey-scale, symmetric image representation of the secondary structure of any given RNA.

a b

c d

Figure 3.2: Four dot-plot examples of RNA secondary structure RFAM families a) 5S rRNA, b)
C0719, c) snR63, d) S_pombe_snR42

There are two options for designing the dataset for RNA classification. The first option is to

evaluate the dot-plot matrix and classify each RNA with its familial class. Most CNNs are trained

and tested on the ImageNet dataset to evaluate their capability in image classification. ImageNet

uses 1000 different classes that the CNNs classify on. With this design, the convolution layers

detect features and then the fully-connected layers evaluate these features to determine which of

the predetermined classes the image is a part of. This would limit the network to only classify-

ing RNA families it has previously been trained on and thus prevent previously unknown RNA

families from being defined. The other option is to let each classification made by the network

determine if two RNA sequences are from the “same family" or “different family". To solve this

problem without altering the RNA dot-plot matrices in some way, it would be necessary to build a

network large enough to accept two full images for the two RNA sequences. This would require
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significant augmentation of current CNN frameworks and would likely fail to take advantage of the

powerful feature extraction of CNNs. Using a standard CNN in this capacity would also leave the

network irregular (not-square), which, along with being hard to implement and train the network,

would take a very long time to train for RNA sequences, and would result in features not being

weighed equally due to the CNN no longer being symmetrical. Instead, in this study, I propose

a different method to convert the RNA classification problem to an image classification problem.

As illustrated in Fig. 3.2, I make use of the symmetric property of the dot-plot of each sequence

and generate one single image from two RNA sequences The bottom-left half from sequence 1

and the top-right half from sequence 2 are stitched together. In this way, the problem is converted

from a two-input problem to a single input, ideal for CNNs. Using this method of stitching two

dot-plot matrices together, I can make use of all available image classification models from RNA

classification. As seen in Fig.3.3, the images from the same family have better symmetric property

than those from different families, however, the differences are very small. The models are trained

to distinguish these small changes. Some generated examples are shown in Figures 3.4 and 3.5.

Figure 3.3: Combine two dot-plot matrices into one image for classification.

To train and evaluate each deep learning model, a large dataset is required. The RFAM database

has over 3,000 families. For these experiments only RNA families that have a sequence length be-

tween 200 and 260 were included for the convenience of study. RNA families typically have similar

sequence length so using a small difference in sequence length is better. It allows the results to

accurately reflect how this method would be used in a functional scenario. The RNA dot-plots

for all sequences were resized to 224× 224 to combine each pair of them into an image. Using
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a sequence length between 200 and 260 also adds the benefit that the images do not get warped

during resizing, allowing better evaluation of the effectiveness of convolutions in RNA classifica-

tion. There were 168 families in this range. The 168 families were split into the train/val/test set

at a ratio of 70:10:20, resulting in a family split of 121/19/28, as shown in Table 3.1. If the dataset

was created exhaustively to cover all possible RNA combinations, the resulting dataset had over

17 million images. A dataset of that size was not necessary for model training as there are a lot of

redundant information in the dataset. The largest family size in this set was 712 while many of the

families only had 2. Instead of using every possible combination, each family larger than 30 RNA

was truncated by randomly selecting 30 RNA from the family. This also has the added benefit of

balancing the varying family sizes, preventing the network from favoring classifying RNA with

large family sizes as “Same Family” more frequently than small RNA families, focusing the model

on learning features of RNA. This reduced the total number of images to slightly greater than 2.4

million.

Figure 3.4: Sample images of two RNA from the same family.
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Figure 3.5: Sample images of two RNA from different families.

In table I, images using all possible combinations of the RNA sequences were generated, ex-

cept for the training data of different families. With 121 families in the training set, over 2.4

million training images can be generated for sequences from different families if use all possible

combinations of RNA are used. However, in these experiments, I found that the models converged

quickly without using all the training data. Maintaining an unnecessarily large training set is not

only overly complicated but increases training time increasing loading time of images. It also de-

creases the representativeness of the training data Instead, to reduce the size of the training data, a

different approach is taken, The following approach was used to decide the training images for the

different family class of the training set. First, I randomly select an RNA from each family. Then,

I randomly pick an RNA from every other family and combine them together to generate a training

image of different families. I repeat this process 20 times and generate a total of 290,400 different

family images of the final training set.
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Set # of Families Class Image Count
Train 121 Same 30,522

Different 290,400
Val 19 Same 5,374

Different 68,882
Test 28 Same 9,520

Different 178,402

Table 3.1: Final image count of the dataset before the iterative random image selection algorithm
was applied.

3.1.2 Siamese Dataset

As discussed in section 3.1.1, there are two options for designing the dataset to be evaluated by

CNNs. Either classify the RNA directly to a family, or classify two RNA as “Different Family” or

”Same Family.” Siamese networks are explicitly designed to make comparisons given two different

inputs though. However, given that a Siamese network needs two inputs, a different dataset than the

one used for the stand-alone CNNs is needed. In fact, building the dataset for the Siamese Network

was simpler. The original dot-plot images used to form the stand-alone CNN dataset before being

stitched together were used. Each input to the Siamese network consisted of two dot-plot matrices.

During training, the model simply selected two RNA at run-time. Thus, it was unnecessary to

apply limits on the different-class of the training dataset as with the stand-alone CNN dataset. The

exact set of images seen each iteration during training were different. However, both the standard

CNN and Siamese networks were validated and tested on the same set of RNA. The sizes of the

validation and test sets for the Siamese networks are exactly half the size of the dataset for the

CNN. This is due to the reversibility allowed by the stand-alone CNNs that is unnecessary with

the Siamese networks. Each image given to the CNNs represents two RNA, but there is a second

combination of both RNA that also represents the two RNA. In order to effectively evaluate how

well the CNN is at classifying RNA, both cases must be tested. With the Siamese network, flipping

the inputs has no effect on the output of the network. Looking at the Siamese network as a function

S(x,y), given two RNA, A and B, S(A,B) will always give the same output as S(B,A),
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3.2 Classification Models

3.2.1 Convolutional Neural Networks

In math, a convolutions is a mathematical operation on two functions that produces a third function

that expresses how the shape of one is modified by the other. In image processing, convolutions

can be expressed as discrete filters over the image. Using these filters, create many feature maps

that relate nearby pixels. This relation allows for localized feature gathering to be expressed in

a global classification when used over an entire image. Convolutional neural networks are built

utilizing these convolutions. CNNs contain two parts, a feature extractor and a fully-connected

network. The feature extractor is composed of stacked convolutional layers mixed with activation

and pooling layers. The stacked convolutional layers, serving as feature extractors, are each fol-

lowed by an activation layer, typically ReLU activation, to allow for the extraction of nonlinear

features Li et al. (2020). The pooling layers, which typically come at the end of the convolutional

layers, or at the end of a block of convolutional layers depending on the model design, reduce the

spatial resolution of the feature maps, making the model more robust to input distortions Rawat

& Wang (2017). The fully-connected network is a densely connected network that interprets the

feature representations extracted by the feature network.

In the experiment, two classical CNN-based classification models were implemented: VGGnet

Simonyan & Zisserman (2014) and ResNet He et al. (2016). VGGnet was showed how larger con-

volution filters could be implemented more efficiently using stacked 3×3 convolutions. VGGnet

follows similar previous CNN constructions. Each block of convolutional layers is followed by

max pooling layers to select the most important features to pass to the next block of convolutional

features. Each convolutional block implements a higher-order convolution used by many previous

models but is implemented as stacked 3×3 layers for efficiency. VGGnet uses a fully-connected

network to evaluate the features. This network has two layers of 4096 neurons each and then a

final 1000-neuron with softmax activation to make the final classification. It achieved first in the

ImageNet Challenge 2014 localization task and second in the classification task with VGGnet-19
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Figure 3.6: Convolution Example

scoring 7.5% top-5 error rate. I selected the largest VGGnet model, VGGnet-19, a network with

16 convolution layers and 3 fully-connected layers, because it has the best performance of all the

VGGnet networks.

Figure 3.7: Residual Block used in ResNet He et al. (2016)

ResNet He et al. (2016) is an improvement on the VGGnet Simonyan & Zisserman (2014)

based scheme. ResNet introduced the concept of residual mapping in the deep learning field. Con-

volutional Neural networks attempt to approximate a function, but as the network gets deeper they

can become increasingly hard to train. By inserting these residual maps throughout the network,

ResNet was able to achieve significantly deeper networks than its predecessors. Diverging from

many previous models, ResNet models do not use any pooling layers within the convolutional
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Figure 3.8: VGGnet-19 and ResNet example He et al. (2016)
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layers. A pooling layer is used at the beginning of the input to reduce the size of the image and

highlight the localized features in each pool. The convolutional layers are also followed by a

max pooling layer to aggregate the features once they have been extracted. Different from many

other CNN, ResNet models use a much more limited fully-connected layer. Unlike VGGnet’s two

fully-connected layers feeding into a softmax layer to determine the image class, ResNet’s con-

volutional layers output to a 2048-neuron layer that then feeds directly into a softmax layer for

classification. As with the VGGnet model, the final softmax layer is changed from a 1000-neuron

layer to a 2-neuron layer for the two output classes in this experiment. Two ResNet models were

picked, ResNet-50 ResNet-101. ResNet achieved first in the ImageNet 2015 classification task

with ResNet-50 and ResNet-101 scoring 5.25% and 4.60% top-5 error rate respectively. ResNet

also achieved first in the ImageNet 2015 detection and localization tasks. The ResNet and VGGnet

architecture can be found in Fig. 3.6.

3.2.2 Siamese Networks

The Siamese network used in these experiments is built on top of the deep CNN models: ResNet-

50, ResNet-101, and VGGnet-19 models. These CNNs are run in place with the fully-connected

layer removed. Both input images are run through the same CNN but with the fully-connected

layers removed. These outputs are then flattened and run through a euclidean distance layer which

calculates the absolute value of the difference between both flattened tensors. The output of the

euclidean distance layer is then run through a fully-connected network. This framework is more

functional for the VGGnet model. The VGGnet model uses a more rigid structure making it much

simpler to strip off its fully-connected layers. The ResNet models instead use dimensional reduc-

tion throughout the model resulting in a much smaller output size from the convolutional layers.

This makes the ResNet model less primed for a Siamese architecture. Simply stripping off the

fully-connected layers at the end of the model does not expose the features being gathered by

the convolutional layers. The output of the VGGnet feature network is 25,088 features while the

output of the ResNet feature network is just 2,048 features. The flattened layers of the two frame-
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works were also set differently. Because the ResNet was already being flattened as a product of

its architecture, the flatten layer of the ResNet models was set to 1,024 neurons. The VGGnet had

significantly more features and through experimentation it was found that the size of the flatten

layer did not have a noticeable impact on performance, so the VGGnet’s Siamese architecture had

a flatten layer of just 256 neurons. The euclidean layer maintained the number of features coming

from the flatten layer. The fully-connected network had two layers with the same number of fea-

tures as output from the euclidean layer (1,024 for ResNet models and 256 for the VGGnet model)

followed by a third layer which was a single neuron with Sigmoid activation to determine if the

two images were from different families or the same family.

22



Figure 3.9: Siamese Network Architecture
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Chapter 4

Experiment and Results

4.1 Experiment

4.1.1 Convolutional Neural Networks

In the first experiment I compared the performance of three models: VGGnet-19, ResNet-50, and

ResNet-101. All models employ the SGD optimizer with a momentum factor of 0.9. The initial

learning rates of ResNet and VGGnet-19 are set at 0.01 and 0.005, respectively, and the learning

rates are reduced by a factor of 0.25 every 50 iterations. The batch size is set at 320. At each

iteration, the model is trained on 320 images, selected randomly from the training dataset. Each

training iteration took 18 seconds (all training was done on an Nvidia k40 GPU). The models are

validated every 50th iteration on the entire validation set. Each validation epoch took 15 minutes.

Training for each model took approximately six hours. Both ResNet models were trained for 600

iterations, and VGGnet-19 was trained for 700 iterations. After training, I choose the model with

the best performance on the validation set. Then, I evaluate their performance using the average-

class accuracy on the test set.

As shown in Table I, the two classes of the dataset are highly imbalanced. The size of different-

family images is much larger than that of the same family. In order to reduce the influence of the

class imbalance in the training set, different class ratios are chosen for the training stage. Three

Different-same ratios were chosen: 1:1, 2:1, and 4:1, as shown in Table II. At the ratio of 1:1, for

the batch of 320 training images at each iteration, an equal number of different-class and same-

class images are chosen. However, at the ratio of 4:1, 256 and 64 images are selected randomly
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Accuracy
Model VGG-19 ResNet-50 ResNet-101

Diff-Same Ratio: 1-1
Train 92.3% 94.7% 96.9%
Val 78.2% 78.8% 80.0%
Test Diff 80.0% 83.0% 84.0%

Same 85.0% 82.0% 83.5%
Avg 82.5% 82.5% 83.5%
Total 84.7% 82.9% 84.0%

Diff-Same Ratio: 2-1
Train 91.9% 92.8% 96.6%
Val 79.2% 81.5% 80.8%
Test Diff 83.0% 86.0% 86.0%

Same 82.0% 83.0% 84.0%
Avg 82.5% 83.0% 85.0%
Total 82.1% 85.8% 85.9%

Diff-Same Ratio: 4-1
Train 90.0% 95.6% 95.6%
Val 77.5% 80.5% 80.0%
Test Diff 87.0% 89.0% 90.0%

Same 77.0% 81.0% 80.0%
Avg 82.5% 85.0% 85.0%
Total 86.5% 88.6% 89.5%

Table 4.1: Comparative results of different convolutional neural networks trained on different
dataset ratios.

from the classes of different-family and same-family respectively so as to ensure more different-

family images are involved in the training process. The different ratios only apply to the training,

while for validation and test, no class ratios are used. Instead the entire validation and test sets are

during their respective phases. The comparative results can be found in Table 4.1.

4.1.2 Siamese Network

The second experiment was done with Siamese networks. Both ResNet models, ResNet-50 and

ResNet-101, as well as VGGnet-19 were tested within the framework of the Siamese network.

Each model was trained for 400 iterations with each training iteration feeding 3200 image pairs to

the Siamese network. Every 25 iterations the model was validated on the entire validation set. Each
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model was trained with an initial learning rate of 0.001 which was decreased to 0.0002 after 300

iterations. The most successful iteration determined by the validation accuracy was then tested on

the entire test set. Training the Siamese models took significantly longer, requiring about 20 hours

to fully train. As with the CNN models, multiple different-same ratios were also experimented

with during training of the Siamese networks. The models were initially trained with a 1:1 ratio,

but given the high training accuracy of the VGGnet model, more extreme training ratios were used.

As well as the 1:1 ratio, a 9:1 ratio and no ratio were also tested. No controls were applied to the

validation or test sets. Full Siamese network results can be found in Table III.

Model VGG-19 ResNet-50 ResNet-101
Different-Same Ratio: 1-1

Train 98.9% 77.3% 74.3%
Val 72.5% 60.1% 62.8%

Test Different 86.5% 74.4% 75.4%
Same 70.9& 73.0% 78.4%

Average 78.7% 73.7% 75.4%
Total 85.7% 74.3% 76.9%

Different-Same Ratio: 9-1
Train 96.5% 73.7% 71.7%
Val 72.9% 61.0% 61.8%

Test Different 83.5% 70.5% 73.4%
Same 72.9& 80.7% 76.6%

Average 78.2% 75.6% 75.0%
Total 83.0% 70.5% 73.6%

Different-Same Ratio: No ratio
Train 95.7% 75.6% 76.0%
Val 73.0% 66.5% 62.1%

Test Different 82.4% 75.6% 73.8%
Same 76.2& 72.2% 76.3%

Average 79.3% 74.9% 75.1%
Total 82.0% 75.4% 73.9%

Table 4.2: Comparative results of different Siamese networks trained on different dataset ratios.

There is a big difference between the ratio used to control the training dataset of the stand-

alone CNN models compared to the Siamese networks. With the stand-alone CNN, the model is

learning to evaluate two different RNA within the same feature network. The CNN is being trained

to learn features in each half of the image and then using the fully-connected network to evaluate
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the similarity between these two patches. For this reason, the model needs to be fed a similar

number of images from each class to learn the distinct features between the same and different

classes. To moderate this learning process, training ratios of 1:1, 2:1, and 4:1 were chosen. When

conducted with the 1:1 training ratio, this experiment can evaluate how well the stand-alone CNN

approximates a balanced dataset. With the 4:1 training ratio, this experiment evaluates how well

the stand-alone CNN approximates a larger, but less balanced dataset. The 2:1 training ratio was

also included in the experiment to provide more data on how the balance of the dataset effects the

efficacy of the model.

With the Siamese network, the feature network does not need to worry about identifying dif-

ferences along the split between the two RNA. Instead, it just needs to learn the important features

provided by the dot-plot of the secondary structure. Seeing more unique RNA during training will

improve this feature network without fear of the classifier associating each RNA’s features with a

same family or different family class. For this reason a more aggressive training ratio was exper-

imented with. The 1:1 ratio was kept to provide control and allow for more direct comparisons

to be made between the training process of the stand-alone CNN and the Siamese network. With

that, no set training ratio was experimented with to evaluate how well the Siamese network learns

the RNA features. The 9:1 ratio was also experimented with to allow for more complex trends to

be seen between the 1:1 training ratio and no training ratio.

4.2 Evaluation Metrics

There are several common methods for evaluating the success of neural networks. It is necessary

to choose the right techniques to evaluate the network, based on the goals of the model. Frequently

used evaluation metrics are: accuracy, sensitivity, specificity, and F-score. In binary classification,

these evaluation metrics are defined by the models ability to correctly guess positive and negative

samples correctly. Correctly labeling a positive is a true-positive (TP), mislabeling a negative

as a positive is a false-positive (FP), correctly labeling a negative is a true-negative (TN), and

mislabeling a positive as a negative is a false-negative (FN). Using these four definitions, all the
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evaluation metrics can be defined:

Accuracy = T P+T N
FN+FP+T N+T P

Sensitivity = T P
FN+T P

Speci f icity = T N
FP+T N

F-score = 2∗ sensitivity×speci f icity
sensitivity+speci f icity

For these experiments, accuracy, specificity, and sensitivity were used. One other metric,

average-class accuracy, was also used. For this thesis, specificity will be defined as the accu-

racy of the model when given two RNA from different families; sensitivity is the accuracy of the

model when given two RNA from the same family; and average-class accuracy is defined for this

paper as the average of the different-class and same-class accuracies. Because the test set for these

experiments is very unbalanced, using pure accuracy as a metric would be deceptive to the per-

formance of the model. A model could get over 94% accuracy by always classifying two RNA as

different-class. Instead, I use the metric total-accuracy, defined for this paper as the accuracy of the

model on the entire test dataset. Average-class accuracy is important because of the significantly

larger size of the different-class data versus the same-class data. Were a model to always predict

different-class, it could achieve a total accuracy of 95%. But, for the same reason, a model should

predict different-class most of the time because the likelihood of two RNA being from the same

family is so incredibly low. For that reason I also take into account total accuracy and look at

the individual class accuracies to evaluate how well these models would work. A false-positive,

indicating two RNA were predicted to be from the same class but not, would drastically hinder a

clustering algorithm from correctly identifying families compared to a false-negative, indicating

two RNA were predicted to be from a different class but weren’t. A high total accuracy combined

with a low sensitivity indicates that the model is much more likely to predict different-class as

opposed to same-class. This is preferred to the inverse as it indicates that model is right a high-

percentage of the time when predicting same-class.
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4.3 Results

Figure 4.1: Receiver Operating Curves for CNN models.

Figure 4.2: Receiver Operating Curves for Siamese models.

Both ResNet CNN models achieved an average-class accuracy of 85.0% for ResNet-50 and

ResNet-101 respectively. The VGGnet-19 model performed slightly worse with a top accuracy

of 82.5%. The best total accuracy of the CNN models was achieved by ResNet-101 with a total

accuracy of 89.5% on the test set while the ResNet-50 model achieved a slightly worse 88.6%.

As evidenced in the results, a higher Diff:Same ratio resulted in the model improving its accuracy

on the different classes while decreasing its performance on the same class. However, even with

the decrease in sensitivity, both the average-class accuracy and total accuracy increased for all

models. The CNN models saw a performance drop when using the Siamese architecture. All

three models had a reduced average-class accuracy when utilizing the Siamese structure, but the

VGGnet-19 model was the best performing model when used in the Siamese architecture. The two

ResNet models saw a significant reduction in training, validation, and test accuracies while seeing

a much smaller reduction in testing accuracy, but the VGGnet model achieved higher training
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accuracy than with the stand-alone CNN model. There was not a significant change in average-

class accuracy across the different training class-ratios for the Siamese networks as there was with

the CNN models. The difference between the performance of the VGGnet Siamese model and

the ResNet Siamese models is likely due to their structure. For this experiment, only the fully-

connected layers were removed for the feature-gathering part of the Siamese structure. However,

the ResNet models shrink their output feature size at their base, reducing to only 2048 features.

The VGGnet model reduces to a significantly larger 25,088 features. This leaves many more

features to be passed to the euclidean layer and gives the VGGnet model much more power in the

Siamese structure. With more experimentation and hands-on control over the exact layout of the

ResNet models, the ResNet Siamese models should improve based on their better performance as

stand-alone networks.
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Chapter 5

Discussion and Future Work

5.1 Discussion

It is difficult to directly compare the output from the neural networks to the output of other meth-

ods because most other methods look at classification of very specific RNA families and compare

classification accuracy based on pairwise sequence identity. These approaches ignore pairwise se-

quence identity and just look at strict classification accuracy. The closest approach in the literature

is the most recent CNNclust Aoki & Sakakibara (2018), which employs one-dimensional convo-

lutions on the primary and secondary sequences to look for common patterns in both. CNNclust

only achieved 75.2% clustering accuracy when tested on ncRNA families not from the training set

Aoki & Sakakibara (2018). This method is able to achieve better performance by utilizing two-

dimensional convolutions on just the secondary structure. Once the models are trained, the models

can process around 80 RNA comparisons per second. However, traditional approaches are very

time-consuming since they have to perform pairwise alignment on their base-pairing probability

matrices, which has a time complexity of O(l4) while l is the lengths of the ncRNA sequences.

These studies demonstrate the potential of applying CNN-based image classification models

to RNA classification. In order to further improve these results, a few measures can be taken.

One approach is to increase the dataset to include more RNA families by removing the limitations

on sequence length. The distortion caused by increasing the disparity in sequence length may

lower the accuracy. However, RNA sequence length amongst families does not vary much so it

is more likely that the CNN’s feature network recognizes this distortion as a strong indicator of

different classes. Another possible measure is applying a clustering algorithm to the classification
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results. These clusters can be determined by groups of RNA with a high percentage of same-family

classifications amongst themselves. Clustering would also give more meaningful data to tune the

hyper-parameters. I can also adopt a better approach to handle the imbalance issue of the dataset.

As shown in Table II, when I choose 4-1 Diff:Same ratio, the test accuracy for different families

is close to 90%, which means there is still room to further increase the performance of the CNN

models. CNNs effectiveness as feature extractors on RNA secondary structure is demonstrated by

their 85% test accuracy in this experiment. With more work, the Siamese networks, which utilize

the CNNs for feature extraction, should be able to see at minimum comparable results.

5.2 Future Work

Further tuning of the ResNet models should yield better results within the Siamese architecture.

One further study that can be done with little modification is removing the flatten layer from the

Siamese network. Typically, Siamese networks use a flatten layer between the feature extractor

and the euclidean layer to collapse the features and simplify the analysis. However, in this case it

is possible that the flatten layer is acting as a small fully-connected network in between the CNN

and the euclidean layer, obfuscating the features from the euclidean layer and resulting in worse

accuracy. This is especially the case with the ResNet which already collapses the network and

removes most of the fully-connected layer entirely. Siamese networks work by using a feature ex-

tractor to analyze two different inputs and then compare their features to determine their similarity,

something that should work well with the feature gathering capabilities that have been consistently

demonstrated by CNNs. The fact that the ResNet models performed worse in a Siamese architec-

ture is more indicative of poor integration than it is that the entire approach is bad. The VGGnet

performed only slightly worse in the Siamese architecture compared to the stand-alone environ-

ment. In fact, the VGGnet Siamese model had better training accuracy than the stand-alone model.

This indicates one of three possibilities. One is that the Siamese network architecture can be tuned

and will yield better validation and test accuracy. The other is that the Siamese network architec-

ture overfits on the training dataset, resulting in worse validation and test accuracy. This would also
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imply that the Siamese model is learning the features of the training set very well which is what

is causing the overfitting. Removing the flatten layer and increasing the number of features for

the fully-connected layer to classify on should decrease the overfitting and improve the validation

and test accuracy. As a stand alone the model’s fully-connected layer is evaluating 25,088 features

while the Siamese network’s fully-connected layers only has 256 features to evaluate.
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Chapter 6

Conclusion

In this work, I presented a new approach for classifying RNA based on their secondary structure

through image classification. By treating the BPPM representation of the secondary structure as an

image, our approach takes advantage of the high speed and powerful feature extraction capabilities

of CNNs. I demonstrated this approach to be a promising way to advance RNA analysis by provid-

ing a tool for more accurate and faster RNA classification, achieving 85% classification accuracy

on long noncoding RNA. I also demonstrated this approach with Siamese networks and showed

that CNNs are better able to analyze RNA secondary structure when the RNA are combined within

the same image. The developed dataset can be taken as a benchmark set for any learning-based

research on RNA classification.
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