91 research outputs found

    Predicting Phishing Websites using Neural Network trained with Back-Propagation

    Get PDF
    Phishing is increasing dramatically with the development of modern technologies and the global worldwide computer networks. This results in the loss of customer’s confidence in e-commerce and online banking, financial damages, and identity theft. Phishing is fraudulent effort aims to acquire sensitive information from users such as credit card credentials, and social security number. In this article, we propose a model for predicting phishing attacks based on Artificial Neural Network (ANN). A Feed Forward Neural Network trained by Back Propagation algorithm is developed to classify websites as phishing or legitimate. The suggested model shows high acceptance ability for noisy data, fault tolerance and high prediction accuracy with respect to false positive and false negative rates

    Emerging Phishing Trends and Effectiveness of the Anti-Phishing Landing Page

    Full text link
    Each month, more attacks are launched with the aim of making web users believe that they are communicating with a trusted entity which compels them to share their personal, financial information. Phishing costs Internet users billions of dollars every year. Researchers at Carnegie Mellon University (CMU) created an anti-phishing landing page supported by Anti-Phishing Working Group (APWG) with the aim to train users on how to prevent themselves from phishing attacks. It is used by financial institutions, phish site take down vendors, government organizations, and online merchants. When a potential victim clicks on a phishing link that has been taken down, he / she is redirected to the landing page. In this paper, we present the comparative analysis on two datasets that we obtained from APWG's landing page log files; one, from September 7, 2008 - November 11, 2009, and other from January 1, 2014 - April 30, 2014. We found that the landing page has been successful in training users against phishing. Forty six percent users clicked lesser number of phishing URLs from January 2014 to April 2014 which shows that training from the landing page helped users not to fall for phishing attacks. Our analysis shows that phishers have started to modify their techniques by creating more legitimate looking URLs and buying large number of domains to increase their activity. We observed that phishers are exploiting ICANN accredited registrars to launch their attacks even after strict surveillance. We saw that phishers are trying to exploit free subdomain registration services to carry out attacks. In this paper, we also compared the phishing e-mails used by phishers to lure victims in 2008 and 2014. We found that the phishing e-mails have changed considerably over time. Phishers have adopted new techniques like sending promotional e-mails and emotionally targeting users in clicking phishing URLs

    Phishing Sites Detection from a Web Developer’s Perspective Using Machine Learning

    Get PDF
    The Internet has enabled unprecedented communication and new technologies. Concomitantly, it has brought the bane of phishing and exacerbated vulnerabilities. In this paper, we propose a model to detect phishing webpages from a web developer’s perspective. From this standpoint, we design 120 novel features based on content from a webpage, four time-based and two search-based novel features, plus we use 34 other content-based and 11 heuristic features to optimize the model. Moreover, we select Random Committee (Base learner: Random Tree) for our framework since it has the best performance after comparing with six other algorithms: Hellinger Distance Decision Tree, SVM, Logistic Regression, J48, Naive Bayes, and Random Forest. In real-time experiments, the model achieved 99.4% precision and 98.3% MCC with 0.1% false positive rate in 5-fold crossvalidation using the realistic scenario of an unbalanced dataset
    corecore